И метода определения момента инерции тела
Исследуемое тело 1 представляет собой металлическую пластину с двумя вырезами (рис. 3.1). Этими вырезами тело подвешивается на опору - кронштейн 2 для организации колебаний. Чтобы уменьшить трение и износ детали точки подвеса О1 и О2 снабжены специальными подставками 3. На конце кронштейна может быть подвешен математический маятник 4, длину которого можно изменять.
В работе определяются моменты инерции I1 и I2относительно осей О1 и О2. Метод определения моментов инерции основан на том, что период колебаний ФМ (пластина в данном случае играет роль физического маятника) связан с его моментом инерции относительно оси колебания формулой
(3.1)
Таким образом, измерив на опыте период колебаний маятника Т и расстояние b от точки подвеса до центра масс (см. рис.3.1), зная массу m маятника и ускорение свободного падения g, можно вычислить момент инерции:
(3.2)
Порядок выполнения работы
1. Снять пластину с подвеса, измерить линейкой расстояния b1 = O1C и b2 = O2C (см. рис. 3.1) и оценить ошибку Db этих измерений. Результаты занести в табл.1; сюда же вписать данные о массе тела и ускорении свободного падения.
2. Подвесить маятник на ось О1, привести его в движение (j £ 8о) и измерить время t1 для 30-50 полных колебаний (N). (Отсчет времени лучше начинать после того, как тело совершит несколько колебаний). Опыт повторить не менее 5 раз при одном и том же числе колебаний. Результаты (эти и последующие) занести в таблицу.
№№ п/п | Число полн. колеб. N | Колебания на оси О1 | Колебания на оси О2 | ||||
t1 | Т1,i | t2 | T2,i | (T2i - <T2>) | (T2i - <T2>)2 | ||
. . | |||||||
Другие b1= ± m = ± L1 = данные b2= ± g = ± L2= |
3. Снять маятник и, подвесив его на ось О2, проделать то же, что и в п.2.
4. Вычислить Т1 и Т2 для каждого из опытов и их средние значения <T1> и <T2>.
5. По формуле
(см. (3.2)) вычислить <I1> и <I2>.
6. Для момента инерции I2 вычислить относительную eI2 и абсолютную DI2 погрешности (для I1 первую из них принять такой же).
Для этого:
а) подсчитать Т2i– <Т2>, (T2i – <T2>)2, (cм. табл.);
б) вычислить абсолютную погрешность в измерении периода
колебаний
,
где n - число измерений; Dtпр - приборная погрешность секундомера; ta,n - коэффициент Стьюдента (определяется по таблице в зависимости от выбранной надежности a и n); N – число полных колебаний.
в) определить относительную погрешность;
г) вычислить абсолютную погрешность в определении I1 и I2:
DI1 = eI2<I1>;DI2 = eI2<I2>;
7. Результаты представить в виде:
I1 = <I1> ± DI1
I2 = <I2> ± DI2
приa = … , eI = … % .
8. Вычислить приведенные длины L1и L2 маятников по формуле
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Физический маятник.
2. Уравнения колебаний физического маятника (дифференциальное уравнение и его решение).
3. Частота и период колебаний физического маятника.
4. Приведенная длина физического маятника.
5. Точка подвеса и центр качаний физического маятника.
6. Метод определения I в данной работе.
7. Порядок выполнения работы.
ЛАБОРАТОРНАЯ РАБОТА № 4
ИССЛЕДОВАНИЕ ЭЛЕКТРОСТАТИЧЕСКИХ ПОЛЕЙ
Цель работы:ознакомиться с методом моделирования электростатического поля с помощью электропроводной бумаги; исследовать электростатическое поле плоского конденсатора.
Приборы и принадлежности: источник постоянного тока, вольтметр, электропроводная бумага, планшет с набором электродов, проводники, один из которых снабжен зондом.
Сведения из теории
Подробно теоретические сведения для данной лабораторной работы изложены в разделах 3.1.2. Напряжённость электростатического поля, 3.1.3. Работа поля по перемещению заряда. Энергия взаимодействия зарядов. Потенциал (стр. 132-137 данного учебного пособия).