Классификация элементарных функций

 

Для чего нужно классифицировать элементарные функции?

Ответ очень прост: каждому классу функций соответствует определенный набор свойств. Некоторые функции бесконечное число раз дифференцируемы на каком-либо промежутке, некоторые непрерывны, другие ортогональны с весом и т.д. и т.п.

Согласитесь, когда все книги разложены по-полочкам по определенным тематикам, достаточно просто найти нужную...


Определение элементарной функции.

Функции, которые могут быть получены из основных элементарных функций посредством арифметических действий (сложение, вычитание, умножение, деление) и образования сложных функций, называютсяэлементарными функциями.

Примером может являться функция


Очень удобно классификацию элементарных функций представить в виде таблицы.

  • Элементарные функции

 

    • Трансцендентные

 

    • Алгебраические

 

      • Иррациональные

 

      • Рациональные

 

        • Целые рациональные

 

        • Дробные рациональные


Элементарные функции подразделяются на алгебраические и трансцендентные.


Определениеалгебраических функций.

Алгебраическими называют функции, составленные из букв и цифр, соединенных знаками действий сложение, умножение, вычитание, деление, возведение в целую степень и извлечение корня.


Другими словами: алгебраическими называют элементарные функции, которые могут быть получены из двух основных функций f(x)=x и f(x)=1 при помощи любого числа последовательно выполненных алгебраических действий (сложение, умножение, вычитание, деление, возведение в целую степень, извлечение корня) и умножения на числовые коэффициенты.

Например, функция является алгебраической.

Определение трансцендентной функции.

Трансцендентными называют элементарные функции, которые не являются алгебраическими. (То есть, они образованы при помощи возведения в иррациональную степень, логарифмирования, с использованием тригонометрических и обратных тригонометрических операций).

К примеру, - трансцендентная функция.

Алгебраические функции подразделяются на рациональные и иррациональные .

Рациональные функции разделяются на целые рациональные функции (многочлены) и дробные рациональные (отношение многочленов).

Пример целой рациональной функции: .

Пример дробно-рациональной функции: .

ПРИМЕЧАНИЕ:

Рациональные функции могут содержать и иррациональные коэффициенты (главное, чтобы под знаком радикала не было аргумента функции). Например, - целая рациональная функция, а не иррациональная.


Определение иррациональной функции.

Иррациональными называются алгебраические функции, содержащие аргумент под знаком радикала (корня).

Примером может являться функция .

ПРИМЕЧАНИЕ:

Если вид функции можно упростить на всей области определения, то классификации подлежит именно упрощенная функция.


К примеру, - не иррациональная функция, а рациональная, так как ;

- не трансцендентная функция, а рациональная алгебраическая, так как .