Собственные полупроводники

Химически чистые полупроводники, то есть полупроводники без примесей, называются собственными полупроводниками. Например, химически чистые кристаллы Si, Ge, а так же кристаллы химических соединений GaAs, JnP и ряд других.

При температуре абсолютного нуля T=0К валентная зона собственного полупроводника полностью заполнена электронами. Зона проводимости пуста. Поэтому при T=0К собственный полупроводник как и диэлектрик обладает нулевой проводимостью s = 1/r, где r - удельное сопротивление.

С повышением температуры возникают тепловые колебания атомов кристаллической решетки полупроводника. Электрон валентной зоны может получить от тепловых колебаний кристаллической решетки (поглотив фонон) энергию ³ Eg. Электрон в этом случае из валентной зоны может перейти в зону проводимости. В этой зоне множество свободных уровней энергии. Поэтому электроны зоны проводимости могут изменять энергию под действием электрического поля и участвовать в создании электрического тока. Отсюда их название – электроны проводимости.

В валентной зоне возникает незаполненное состояние, которое называют дыркой. В присутствии внешнего электрического поля ближайший к дырке электрон валентной зоны попадает в нее, оставляя при этом новую дырку, которую заполняет следующий электрон и так далее. Таким образом наличие дырки позволяет электронам валентной зоны изменять свое энергетическое состояние, то есть участвовать в создании электрического тока, Дырка при этом перемещается в направлении, противоположном движению электрона (рис.3.12). Следовательно, она ведет себя как носитель положительного заряда, по абсолютной величине равного заряду электрона.

Понятие «дырка» служит для описания поведения электрона валентной зоны. Электроны проводимости и дырки являются свободными носителями заряда в полупроводнике и обеспечивают в нем протекание электрического тока.

Вместе с рассмотренным процессом тепловой генерации электронов и дырок – электронно-дырочных пар – возникает противоположный процесс: рекомбинация электронов и дырок. Электрон зоны проводимости, двигаясь в объеме полупроводника, встречает дырку и переходит на ее место, заполняет свободное состояние в валентной зоне. При этом излишек энергии выделяется в виде фононов или фотонов. Одновременное действие процессов генерации и рекомбинации приводит к установлению в полупроводнике равновесной концентрации носителей заряда. В собственном полупроводнике равновесные концентрации электронов n0 и дырок p0 равны: n0=p0=ni; ni – эту величину назвали собственной концентрацией носителей заряда.

Ясно, что произведение

n0р0=ni2. (3.7)

Это важное равенство справедливо для полупроводника, находящегося в состоянии термодинамического равновесия, то есть когда на него не оказывается какое-либо физическое воздействие. Оно выполняется не только для собственного полупроводника, но и для любого примесного (смотри ниже). Равенство (3.7) широко используется в теории полупроводников и называется уравнением полупроводника или законом действующих масс по аналогии с терминологией химической термодинамики

Из изложенного выше можно сделать два важных вывода:

1. Проводимость полупроводников является проводимостью возбужденной. Она появляется под действием внешнего фактора, способного сообщить электронам валентной зоны энергию большую Eg – достаточную для их перехода из валентной зоны в зону проводимости. Это может быть нагрев полупроводника, облучение его светом и так далее.

2. Разделение тел на полупроводники и диэлектрики носит в значительной мере условный характер. Алмаз являющийся прекрасным диэлектриком при комнатной температуре, проявляет заметную проводимость при высоких температурах и ведет себя подобно полупроводнику.

Примесные полупроводники

Для придания полупроводнику требуемых электрофизических характеристик в него вводят примеси. Примесные атомы бывают двух типов.

Пусть часть атомов исходного полупроводника Si замещена атомами пятивалент­ного мышьяка As (рис.3.13). Четыре своих валентных электрона атом мышьяка использует для уста новления ковалентных связей с четыремя соседними атомами Si. Пятый электрон в образовании не участвует. Энергия связи его с ядром атома As уменьшается примерно в e2 раз, где e - диэлектрическая проницаемость Si (e » 12). Этот электрон образует энергетический уровень ЕД, расположенный в запрещенной зоне у дна зоны проводим

Величина Д=ЕС-ЕД » 0,049 эВ. При сообщении таким электронам энергии ³ Д они покидают атом As и переходят в зону проводимости, где становится свободными носителями заряда. Образующиеся при этом положительные ионы As в электропроводности не участвуют, так как связаны с кристаллической решеткой Si ковалентными связями.

Примеси, являющиеся источником электронов для зоны проводимости, называются донорными примесями или просто донорами. А энергетические уровни электронов этих примесей называются донорными уровнями и обозначаются ЕД.

Пусть теперь в решетке Si часть атомов полупроводника замещена трехвалентными атомами бора В (рис.3.15). Для установления связи с четырьмя ближайшими соседними атомами Si, атому В не хватает одного электрона. Недостающий электрон атом В может захватить у соседнего атома Si. Для этого электрону валентной зоны необходимо сообщить энергию »0,045 эВ. Появившаяся разорванная ковалентная связь у атома Si представляет собой дырку, возникшую в валентной зоне - свободный носитель заряда. Электрон, захваченный атомом В образует энергетический уровень ЕА, расположенный в запрещенной зоне вблизи потолка валентной зоны (рис.3.16). Величина А=ЕАV»0,045 эВ равна энергии, которую должен получить электрон, чтобы его захватил атом В. Возникающий отрицательный ион В в проводимости не участвует, так как связан в кристалле ковалентными связями.

Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторными примесями или просто акцепторами. Уровни этих примесей называются акцепторными и обозначаются ЕА.

Различие между собственными и примесными полупроводниками определяется степенью влияния примесей на проводимость. Если концентрация доноров NД>>ni, то основной вклад в электропроводность дают электроны зоны проводимости, так как n0>>р0. В этом случае имеем дело с полупроводником n-типа или электронным полупроводником. В полупроводнике n-типа электроны основные носители заряда, а дырки – неосновные.

Если же концентрация акцепторной примеси NА>>ni, то р0>>n0 и основной вклад в электропроводность дают дырки. Имеем полупроводник р-типа или дырочный полупроводник. В этом случае дырки - основные носители заряда, электроны - неосновные. Для примера рассмотрим Si-полупроводник с ni=1010 см-3. Пусть NД » 1013 см-3. В этом случае концентрация электронов, как будет показано ниже, n0» 1013см-3. Концентрация дырок согласно уравнению полупроводника (3.7) р0 = ni/n0 = 107см-3 и n0>>р0, полупроводник n-типа. Аналогично в случае акцепторной примеси.