В) Приведение величин вторичной обмотки к числу витков первичной обмотки. 2 страница

(2-35)

В равенствах (2-35) и — индуктивные сопротивления рассеяния обмоток, а — индуктивное сопротивление взаимоиндукции обмоток.

Ранее при рассмотрении режима холостого хода мы пренебрегали полем вне сердечника трансформатора. В действительности это поле согласно закону полного тока должно существовать. Оно называется полем рассеяния. Созданные им потокосцепления обмоток малы по сравнению с потокосцеплениями обмоток, созданными главным потоком. С большим приближением к действительным условиям можно считать, что поле рассеяния и поле в сердечнике, соответствующее главному потоку, существуют независимо одно от другого.

На рис. 2-13 представлена приближенная картина поля рассеяния, которую кладут в основу расчета потокосцеплений рассеяния. Здесь пунктирной линией показан путь главного потока Ф, сплошными линиями показаны индукционные линии поля рассеяния. Они могут быть условно разделены на две группы: сцепляющиеся с первичной обмоткой и сцепляющиеся со вторичной обмоткой. Магнитные сопротивления для потоков соответствующих индукционных трубок рассеяния определяются в основном сопротивлениями тех их частей, которые проходят вдоль обмоток и в промежутке между ними Их можно принять постоянными, поскольку потоки трубок проходят по материалам (медь, изоляция, воздух или масло), для которых μ = const. Магнитными сопротивлениями потоков трубок вне обмоток и промежутка между ними можно пренебречь, так как здесь они проходят в основном по стали сердечника.

Рис. 2-13. Приближенная картина поля рассеяния трансформатора с концентрическими обмотками, где крестиками и точками условно показаны направления токов в обмотках для рассматриваемого момента времени.

Таким образом, потокосцепления рассеяния и созданные ими э.д.с. рассеяния можно принять пропорциональными н.с. или токам соответствующих обмоток и считать индуктивности Lσ1 и Lσ2, а следовательно и , постоянными величинами. Индуктивное сопротивление взаимоиндукции зависит от Ф, однако в пределах небольшого изменения Фм и, следовательно, Е1 можно принять также постоянным.

С учетом приведенных равенств (2-35) уравнения напряжений (2-24а) и (2-25а) для установившегося режима могут быть написаны в комплексной форме:

(2-36)

(2-37)

Уравнения (2-36) и (2-37) называются векторными уравнениями напряжений трансформатора (здесь имеются в виду временные векторы напряжений, э.д.с. и токов).

В реальном трансформаторе со стальным сердечником при его работе возникают магнитные потери. Для их учета мы должны считать, так же как при холостом ходе, что ток имеет наряду с реактивной составляющей активную составляющую [см. уравнения (2-9) — (2-13)]; однако обе эти составляющие мы должны отнести не к а к , так как они зависят от Фм.

Вследствие нелинейной связи между потоком Ф и результирующим током кривая последнего при синусоидальном потоке Ф будет несинусоидальной (§ 2-13). Для облегчения анализа зависимостей, характеризующих работу трансформатора, ток принимается синусоидальным с действующим значением, равным тому же значению действительного тока. Такое допущение не может привести к заметной ошибке из-за относительной малости тока .

в) Приведение величин вторичной обмотки к числу витков первичной обмотки.

Указанное приведение получим, если помножим уравнение (2-37) на отношение чисел витков

соответственно будем иметь

(2-38)

где

; [согласно (2-8)];

(2-39)

представляют собой величины вторичной обмотки, приведенные к числу витков первичной обмотки. Такое приведение величин вторичной обмотки облегчает исследование работы трансформатора: делает более удобным построение для него векторных диаграмм (§ 2-4,г), позволяет построить удобную для расчетов схему соединения его активных и индуктивных сопротивлений, называемую схемой замещения трансформатора, где магнитная связь между обмотками заменена электрической связью между ними (§ 2-5).

Можно считать, что приведение величин вторичной обмотки к числу витков первичной обмотки сводится к замене действительной обмотки с числом витков обмоткой с числом витков , причем при такой замене н.с. должна остаться, как отмечалось, неизменной и равной , а также должны остаться неизменными относительные значения падений напряжения и электрические потери в обмотке:

Из этих равенств, учитывая, что и , мы можем также найти соотношения между приведенными и действительными величинами вторичной обмотки. Они получаются такими же, как и (2-39).

Г) Векторные диаграммы.

Векторные диаграммы наглядно показывают соотношения между токами, э.д.с. и напряжениями обмоток. Они строятся в соответствии с уравнениями (2-19), (2-36) и (2-38).

На рис. 2-14 — 2-16 представлены диаграммы трансформатора, работающего с различными нагрузками.

Рис. 2-14. Векторная диаграмма трансформатора работающего с отстающим током.

Рис. 2-15. Векторная диаграмма трансформатора, работающего с 1.

Рис. 2-16. Векторная диаграмма трансформатора, работающего с опережающим током.

Векторная диаграмма трансформатора, работающего, например, с отстающим током (рис. 2-14), при заданных может быть построена следующим образом.

Зная найдем и . Построим в выбранном масштабе для токов и напряжений векторы и так, чтобы они были сдвинуты на угол Прибавляя к векторы падений напряжения и найдем э.д.с. (мы предполагаем, что сопротивления и , а также и известны). Вектор потока опережает э.д.с. на 90°. Ток опережает поток на угол . Вторая составляющая первичного тока равна и противоположна по фазе вторичному току следовательно, вектор первичного тока определяется геометрическим сложением: . Первичное напряжение , имеет составляющую , уравновешивающую э.д.с. , и составляющие и равные соответственно активному и индуктивному падениям напряжения в первичной обмотке ( совпадает по фазе с током опережает ток на 90°).

Обратная задача, с которой обычно приходится иметь дело на практике, когда заданы и cos φ2 и требуется найти решается в большинстве случаев аналитически, как показано в § 2-8.

Диаграммы на рис. 2-14 и 2-15 показывают, что напряжение при нагрузке меньше, чем напряжение при холостом ходе, и тем меньше, чем больше сопротивления обмоток r1, x1, r2, и угол φ2.

Значение тока зависит от значения э.д.с. ; следовательно, оно изменяется с изменением тока нагрузки, если = const. Однако это изменение невелико, и при практических расчетах можно принять Фм=const и =const.

Диаграмма на рис. 2-16 показывает, что при работе трансформатора с опережающим током напряжение на его зажимах может быть выше, чем при холостом ходе, так как в этом случае э.д.с. возрастает и, кроме того, результирующая э.д.с. + больше, чем ( ― э.д.с. рассеяния вторичной обмотки, приведенная к числу витков первичной обмотки).

Приведенные ранее уравнения напряжений и токов, а также векторные диаграммы относятся к однофазному трансформатору или к одной фазе трехфазного трансформатора. Различие токов холостого хода отдельных фаз трехфазного трансформатора вследствие несимметрии их магнитных цепей не имеет практического значения, так как токи холостого хода составляют обычно небольшую долю номинального тока; параметры же отдельных фаз r1, , x1, можно считать одинаковыми.

 

 

2-5. Схема замещения

Расчеты, связанные с исследованием работы трансформатора, можно свести к расчетам простых цепей переменного тока. Для этого заменим трансформатор некоторой схемой, сопротивление которой Zэкв определим; из уравнений напряжений (2-36) и (2-38) и уравнения токов (2-17). Перепишем эти уравнения в следующем виде:

(2-40)

(2-41)

(2-42)

где [см. уравнение (2-12)];

― приведенное к числу витков первичной обмотки сопротивление внешней вторичной цепи, падение напряжения в котором, очевидно, и есть .

Подставив в (2-41) значение тока из (2-42), найдем:

Подставив в (2-40) найденное значение , получим:

(2-43)

Сопротивлению Zэкв соответствует схема, представленная на рис. 2-17. Она называется схемой замещения трансформатора. Здесь ветвь с сопротивлением может быть названа ветвью намагничивания. Очевидно, что уравнения напряжений и токов, составленные согласно законам Кирхгофа для этой схемы, будут такими же, как и уравнения (2-40) — (2-42).

Рис. 2-17. Схема замещения трансформатора.

В схеме замещения переменным параметром является сопротивление ; остальные ее параметры можно считать постоянными. Они могут быть определены путем расчета, а также опытным путем. В последнем случае обращаются к данным опытов холостого хода и короткого замыкания.

 

 

2-6. Опыт холостого хода

По данным опыта холостого хода определяются коэффициент трансформации , магнитные потери Рс и параметры ветви намагничивания Магнитные потери Рс, как указывалось, могут быть приняты равными мощности Р0, потребляемой трансформатором при холостом ходе.

При опыте холостого хода собирается схема по рис. 2-18 для однофазного трансформатора или по рис. 2-19 для трехфазного трансформатора. При номинальном напряжении (линейном в случае трехфазного трансформатора) измеряют и Опыт холостого хода должен производиться при синусоидальном напряжении. Если напряжение заметно отличается от синусоидального, то в данные измерений необходимо внести некоторые поправки (согласно ГОСТ). При исследовании малых трансформаторов следует учитывать потери в приборах, так как они могут быть соизмеримы с потерями холостого хода.

Рис. 2-18 Схема при опыте холостого хода для однофазного трансформатора.

Рис. 2-19. Схема при опыте холостого хода для трехфазного трансформатора.

Измерения U1 и U20 производятся при помощи вольтметров или при высоком напряжении, при помощи вольтметров и измерительных трансформаторов напряжения. По данным измерений находят коэффициент трансформации: U20/U1 По амперметру и ваттметру находят ток и мощность P0 в случае однофазного трансформатора. В случае трехфазного трансформатора необходимо измерить токи во всех трех фазах, так как вследствие несимметрии магнитных цепей отдельных фаз токи в них будут различны. За ток холостого хода здесь принимается среднее арифметическое токов отдельных фаз, т. е.

(2-44)

Мощности отдельных фаз также различны; поэтому мощность, потребляемую трехфазным трансформатором при холостом ходе, следует измерять двумя ваттметрами по схеме рис. 2-19.

Для нормальных силовых трансформаторов ток холостого хода составляет (0,10—0,04) IН при номинальных мощностях от 5 до нескольких тысяч киловольт-Ампер.

Холостому ходу будет соответствовать схема замещения рис. 2-17 при =∞. Следовательно, по данным опыта холостого хода получаем:

Так как для нормальных трансформаторов r12 больше r1 и x12 больше х1 в сотни раз, то можно принять:

 

 

2-7. Опыт короткого замыкания

По данным опыта короткого замыкания определяются потери короткого замыкания Рк, которые могут быть приняты равными электрическим потерям в обмотках, и параметры трансформатора, к которым приходится обращаться при решении многих практических задач.

Под коротким замыканием трансформатора здесь понимается такой режим его работы, при котором вторичная обмотка замкнута накоротко, а к первичной обмотке подведено напряжение. Этому режиму работы соответствует схема замещения (рис. 2-17) при =0.

Так как сопротивления z1 и в сотни раз меньше сопротивления z12, то при коротком замыкании трансформатора можно пренебречь током в этом сопротивлении, т. е. принять . В этом случае получаем схему замещения, представленную на рис. 2-20.

Рис. 2-20. Схема замещения короткозамкнутого трансформатора.

Векторная диаграмма короткозамкнутого трансформатора приведена на рис. 2-21.

Рис. 2-21. Векторная диаграмма короткозамкнутого трансформатора.

От этой диаграммы мы можем перейти к диаграмме, представленной на рис. 2-22.

Рис. 2-22. Треугольник короткого замыкания.

Прямоугольный треугольник ОАВ называется треугольником короткого замыкания трансформатора. Один его катет другой катет и гипотенуза

Сопротивления

называются соответственно активным, индуктивным и полным сопротивлениями короткого замыкания трансформатора. Параметры короткого замыкания zк, rк и xк определяются по данным опыта короткого замыкания. При этом опыте собирается одна из схем, приведенных на рис. 2-18 и 2-19, но вторичные зажимы замыкаются накоротко. Измеряют U, I1, Pк. Напряжение U устанавливают такое, чтобы ток был приблизительно равен номинальному току Оно для нормальных трансформаторов мощностью от 20 до 10000 кВА составляет от 5 до 10% номинального напряжения В соответствии с указанными значениями и подбирают при опыте короткого замыкания измерительные приборы.

Так как при этом опыте а следовательно, и поток Ф (E1 ≈ 0,5 U, рис. 2-21) составляют всего несколько процентов от их значений при номинальном напряжении (а потери в стали приблизительно пропорциональны Ф2), то магнитными потерями можно пренебречь и считать, что мощность Pк, потребляемая трансформатором при коротком замыкании, идет на покрытие электрических потерь в обмотках трансформатора:

(2-45)

Отсюда находим:

(2-46)

Согласно ГОСТ активные сопротивления обмоток трансформаторов, по которым определяются электрические потери и активные падения напряжения, должны быть приведены к температуре 75° С. Это приведение делаем согласно соотношению

(2-47)

где — температура обмоток, °С, при опыте короткого замыкания.

Далее определяем:

(можно принять, что от температуры не зависит) и

После этого определяем номинальное напряжение короткого замыкания Uк = Izк75. Оно, очевидно, равно напряжению, которое, будучи приложено к одной обмотке трансформатора при замкнутой накоротко его другой обмотке, создаст в обеих обмотках номинальные токи.

Напряжение Uк = Izк75 выражается в процентах номинального напряжения той обмотки, со стороны которой производились измерения при опыте короткого замыкания:

(2-48)

Процентное значение номинального напряжения короткого замыкания указывается на щитке трансформатора. Оно для нормальных трансформаторов лежит в пределах 5 — 10%. Также выражаются в процентах номинального напряжения реактивная и активная составляющие напряжения короткого замыкания:

(2-49)
(2-50)

Если числитель и знаменатель правой части равенства (2-50) умножить на I и число фаз т, то получим:

(2-51)

т. е. в то же время дает процентное значение электрических потерь в обмотках трансформатора или потерь короткого замыкания при номинальных токах.