В) Приведение величин вторичной обмотки к числу витков первичной обмотки. 4 страница
Теперь должно быть ясным, почему обмотки трехфазной группы и трехфазного броневого трансформатора выполняются, как правило, с соединением Y/D или ∆/Y. Обмотки трехфазного стержневого трансформатора часто имеют соединение Y/Y. Однако и здесь при большой мощности (больше 1800 кВА) выбирается соединение Y/∆ или ∆/Y.
Ранее иногда, в случае необходимости иметь соединение обеих обмоток мощного трехфазного трансформатора в звезду, снабжали такой трансформатор третьей обмоткой, соединенной треугольником, причем никаких выводов от этой обмотки не делалось, она служила только для компенсации третьей гармоники в кривой фазной э.д.с. Такую обмотку будем называть компенсационной. В настоящее время она используется как третья рабочая обмотка (см. § 2-16).
2-14. Расчет тока холостого хода
Ток холостого хода Iо имеет активную составляющую Iоа и реактивную составляющую Iор
Активная составляющая тока холостого хода, как указывалось, зависит от потерь Рс в стали сердечника:
для однофазного трансформатора
для трехфазного трансформатора
где U1 — фазное напряжение.
В действительности потери в стали зависят от потока Фм и, следовательно, от э.д.с. Е1; однако практически при определении потерь Рс можно считать
Потери в стали сердечника зависят от: Вс ─ индукции в стержнях, Гс; Ва ─ в ярмах, Гс; веса Gя ─ стержней и Gя ─ ярм, кг; f ─ частоты перемагничивания, Гц. Приближенно можно принять:
Вт, (2-65)
где p10/50 — удельные потери в листовой стали, Вт/кг, из которой выполнен сердечник трансформатора, при максимальной индукции 10000 Гс и частоте 50 Гц.
Для силовых трансформаторов обычно выбирается сталь марок Э41, Э42 и холоднокатаная Э320 (при толщине листа ∆ = 0,5 или 0,35 мм); для указанных марок стали р10/50 соответственно равняется 1,6; 1,4 и 1,15 — 1,20 Вт/кг (при ∆ =0,5 мм) и 1,35; 1,2; 0,9—0,95 Вт/кг (при ∆ = 0,35 мм).
Значения индукций определяются по формулам
где Sc и Sя — площади сечения стержня и ярма, см2 (берется площадь без изоляции между листами); значение Фм , мкс, рассчитывается по уравнению
. (2-66)
Веса Gc и Gя определяются по геометрическим размерам и удельному весу для листовой стали γс = 7,6 кг/дм3.
Из (2-65) следует, что при увеличении частоты f сверх номинальной и при сохранении неизменным номинального первичного напряжения потери Рс будут уменьшаться, так как при этом согласно (2-66) поток Фм, а следовательно, и В изменяются обратно пропорционально f.
Реактивная составляющая тока холостого хода I0р определяется из расчета магнитной цепи трансформатора следующим образом.
На рис. 2-45,а представлен сердечник однофазного трансформатора.
Рис. 2-45. Эскизы магнитных цепей.
а—однофазного трансформатора (пв = 4); б—трехфазного трансформатора (для крайних фаз пв = 3; для средней nв=1).
Здесь жирным пунктиром показан путь главного потока Ф. Согласно закону полного тока н.с. I0рw1, необходимая для создания в сердечнике потока Фм, определяется из уравнения
I0рw1 = 2Hclc + 2Hяlя + 0,8Bcnвδв, (2-67)
где Hс и Ня — напряженности поля в стержне и ярме, А/см, которые определяются по кривым намагничивания (рис. 2-46) соответственно для индукций Вс и Вя;
nв — число зазоров, которое принимается равным четырем для однофазного трансформатора при сборке его сердечника «внахлестку»;
δв ≈ 0,0035 0,005 см — зазор при той же сборке сердечника.
Рис. 2-46. Кривые намагничивания трансформаторной листовой стали: сплошная — для Э41 и Э42; пунктирная — для Э320.
Из (2-67) реактивная составляющая тока холостого хода, А:
(2-68)
На рис. 2-45,б представлен сердечник трехфазного стержневого трансформатора. При расчете I0р такого трансформатора сначала определяется I0р(кр) для крайних фаз по формуле
где nв = 3; затем для средней фазы по формуле
где nв = 1. Ток I0р принимается равным среднему арифметическому:
При расчете I0р мы пренебрегаем высшими гармониками тока i0р iμ, так как они при обычных значениях индукций мало влияют на действующее значение I0р.
Из кривых намагничивания рис. 2-46 мы видим, как сильно влияет насыщение стали (значение В) на Н, а следовательно, и на I0р. Обычно при стали Э41 и Э42 значения Bс = 10000 14500 Гс и при стали Э320 Вс = 13000 16500 Гс, Вя = (0,90 0,95) Вс для масляных трансформаторов мощностью от 5 до 100000 кВА; для сухих трансформаторов они снижаются на 10 20%. При таких индукциях ток I0р (I0р I0) составляет от 10 до 4% номинального тока I1н.
2-15. Определение параметров трансформатора расчетным путем
Расчет активных сопротивлений rj и r2, Ом, может быть произведен, если известны сечения проводников обмоток s1 и s2, мм2, число витков wl и w2 и средние длины витков lср1 и lср2, м. Тогда имеем:
где kr = 1,03 1,05 — коэффициент, учитывающий потери, вызванные полями рассеяния обмоток;
— удельное сопротивление меди при 75° С;
— тоже для алюминия.
Активное сопротивление короткого замыкания
Потери в обмотках при номинальных токах (сюда же относятся и потери, вызванные полями рассеяния), Вт
Формулы для потерь можно преобразовать следующим образом:
подставив ─ квадрат плотности тока первичной обмотки, А/мм2; ─ удельный вес меди; ─ вес меди первичной обмотки, кг, получим:
(2-69)
аналогично будем иметь.
(2-70)
при алюминиевых обмотках (γа 2,65)
где Gal и Ga2 — веса обмоток, кг.
Расчет индуктивных сопротивлений рассеяния х1 и х2 может быть произведен только приближенно, так как не представляется возможным точно установить распределение поля рассеяния. Мы рассмотрим метод расчета х1 и х2 для цилиндрических обмоток. Они в разрезе с одной стороны стержня показаны на рис. 2-47. Здесь же показана часть стержня, на котором помещены обмотки.
Рис. 2-47. К расчету хк = х1 + х'2 (см. рис. 2-13).
Мы считаем, что поле рассеяния создается н.с. i1w1 и равной ей н.с. i2w2 = (пренебрегаем при этом н.с. i0w1) и что индукционные линии этого поля направлены, как показано на рис. 2-47, параллельно стенкам обмоток, равным по высоте. Примем, что магнитные сопротивления индукционных трубок поля обусловлены только их частью вдоль обмоток и промежутка между ними. Магнитным сопротивлением остальных частей индукционных трубок пренебрегаем. Кривая н.с., создающей поле рассеяния, в этом случае изобразится трапецией, а так как μ для воздуха (или масла), меди и изоляции — величина постоянная, то кривая распределения индукции вдоль пунктирной линии также изобразится трапецией.
Найдем индуктивность рассеяния первичной обмотки:
Будем условно считать, что потокосцепление, определяющее Lσ1 создается индукционными линиями, находящимися слева от штрихпунктирной линии, разделяющей промежуток δ пополам. Оно рассчитывается следующим образом.
Поток в промежутке сцепляется со всеми w1 витками (здесь для определения площади, через которую проходит поток, нужно было бы взять средний диаметр а не D, но в дальнейшем при определении потока промежутка, сцепляющегося со вторичной обмоткой, мы возьмем также D, а не что до некоторой степени компенсирует допущенную ошибку). Индукционные линии, проходящие вдоль обмотки, дают различные сцепления с витками обмотки. Поток в стенке цилиндра с толщиной dx равен BxdxπD (здесь также приближенно взят постоянный диаметр D), где Он сцепляется с витками. Следовательно, полное потокосцепление первичной обмотки
(2-71)
Аналогично определяется потокосцепление вторичной обмотки, от которого зависит индуктивность рассеяния Lσ2:
(2-72)
Индукция в промежутке между обмотками, В·с/см2,
(2-73)
Индуктивность короткого замыкания
Подставляя сюда (2-71) — (2-73), получим:
(2-74)
Следовательно, индуктивное сопротивление короткого замыкания, Ом,
(2-75)
где промежуток, см
δ' = δ + (2-76)
Мы видим, что хк зависит от геометрических размеров δ, а b, l. Однако в нормальных трансформаторах эти размеры выбираются таким образом, чтобы обеспечить надежную работу трансформатора (достаточные изоляционные расстояния и охлаждение) и получить по возможности меньший расход металлов. Наиболее радикальным способом изменения хк является изменение w1. Число витков w1 зависит от потока Фм, следовательно, от сечения Sc (Фм = BсSс).
Выбор этого сечения должен производиться таким образом, чтобы получились надлежащие значения Фм, w1, хк и uк.
Высоты обмоток всегда выбираются по возможности равными друг другу. Только при таких обмотках поле рассеяния распределяется в соответствии с рис. 2-47. В противном случае оно возрастает, что нежелательно из-за увеличения хк, увеличения потерь от полей рассеяния и возрастания электромагнитных сил, действующих на обмотки при внезапном коротком замыкании (§ 2-20,б).
Параметры трансформатора можно выразить в долях сопротивления, принимаемого за единицу и равного отношению номинальных фазных напряжения и тока U1н/I1н. Тогда они будут выражены в долях единицы (д.е.) или в относительных единицах измерения, о.е. Будем их обозначениям приписывать звездочку наверху справа, которые в о.е. измерения равны:
где сопротивления, Ом,
Токи, напряжения, мощности в о.е. измерения
Процентные значения параметров получим, если их значения в о.е. измерения умножим на 100. Очевидно, что
Значения указанных величин для нормальных силовых трансформаторов в зависимости от номинальной мощности и верхнего предела номинального высшего напряжения приведены в табл. 2-1 (I0% = I0/Iн 100).
Таблица 2-1
Sн | кВт | |||||
Uн | 6,3 | 6,3 ─ 35 | 10 ─ 35 | 38,5 ─ 121 | кВ | |
I0% | 6 ─ 8 | 5 ─ 5,5 | 3 ─ 3,5 | 2,7 | % | |
uа | 3,35 | 2,4 | 1,5 | 0,92 ─ 0,97 | 0,5 | % |
uр | 4,36 | 4,94 ─ 6,05 | 5,3 ─6,25 | 7,45 ─ 10,5 | 10,5 | % |
uк | 5,5 | 5,5 ─ 6,5 | 5,5 ─ 6,5 | 7,5 ─ 10,5 | 10,5 | % |
1,05 | 1,42 | 1,96 ─ 1,68 | 3,23 ─ 3,14 | 3,7 | о.е. | |
16,6 ─ 12,5 | 20 ─ 18,2 | 33,3 ─ 28,7 | о.е. |
2-16. Автотрансформатор
Автотрансформатор отличается от трансформатора тем, что у него обмотка низшего напряжения является частью обмотки высшего напряжения, причем она выполняется из проводников, в общем случае отличающихся по сечению от проводников другой части, и обычно располагается относительно другой части, как показано на рис. 2-48.
Рис. 2-48. Схема понижающего автотрансформатора (а); расположение частей его обмоток относительно стержня сердечника (б).
Следовательно, части Аа и аХ можно рассматривать как обмотки двухобмоточного трансформатора, имеющие между собой не только магнитную связь, но и электрическую.
Автотрансформаторы могут служить как для понижения, так и для повышения напряжения. Они выполняются для небольших коэффициентов трансформации, не сильно отличающихся от единицы, и в этом случае, как показано в дальнейшем, экономичнее в работе и требуют на изготовление меньше материалов, чем обычные двухобмоточные трансформаторы на ту же номинальную мощность.
За номинальную мощность автотрансформатора принимается мощность Sн = U1нI1н = U2нI2н.
Приложенное к обмотке А — X напряжение , уравновешивается в основном э.д.с. . Электродвижущая сила создает ток во вторичной цепи, при этом следовательно,
Пренебрегая током холостого хода, согласно закону полного тока можем написать:
отсюда
(2-77)
Ток в общей части обмотки а — X равен геометрической сумме первичного и вторичного токов:
(2-78)
Для понижающего трансформатора I2>I1 следовательно, ток общей части обмотки равен
что дает возможность соответственно уменьшить сечение ее проводников.
Учитывая (2-77), получим:
Части обмотки А — а и а — X магнитно уравновешены, т. е. их н.с. равны и противоположно направлены, что следует из соотношений
(2-79)
Для того чтобы можно было сравнить автотрансформатор с двухобмоточным трансформатором, найдем расчетную мощность Sа автотрансформатора.
Расчетная мощность Sа1 части обмотки А — а равна:
(2-80)
расчетная мощность Sa2 части обмотки а — X равна:
(2-81)
Следовательно, Sal = Sa2, так как E1I1 = E2I2.
Отсюда найдем расчетную мощность автотрансформатора при номинальных значениях токов и напряжений:
(2-82)
Размеры автотрансформатора рассчитываются для мощности
тогда как размеры двухобмоточного трансформатора рассчитываются для мощности Sн.
Таким образом, расчетная мощность автотрансформатора меньше его номинальной мощности, называемой также полной или проходной:
(2-83)
Размеры трансформатора определяются значением электромагнитной мощности при cos φ2 = 1, т. е. мощности, которая при этом передается магнитным полем с первичной на вторичную обмотку. Действительно, для данной частоты тока эта мощность По магнитному потоку Ф определяются сечения стержней и ярм трансформатора (сечение где B = 12000 14500 Гс при f = 50 Гц); по току — сечения проводников ( , где для масляных трансформаторов ); по числу витков, сечению проводников и их изоляции — размеры окна трансформатора (площадь окна равна произведению высоты стержня на расстояние между соседними стержнями).
В двухобмоточном трансформаторе магнитным полем передается мощность Sн = E1нI1н = E2нI2н, а в автотрансформаторе — только часть этой мощности
другая часть мощности
передается во вторичную внешнюю цепь непосредственно по проводам.
Очевидно, что автотрансформаторы тем экономичнее по сравнению с двухобмоточными трансформаторами, чем ближе w2 к w1, т. е. чем ближе коэффициент трансформации к единице. Так как веса обмотки и стали сердечника автотрансформатора меньше весов тех же материалов двухобмоточного трансформатора, то и потери в нем меньше, а к.п.д. выше при той же мощности Sн. Параметры, а следовательно, и изменение напряжения также имеют меньшие значения.
Изменение напряжения автотрансформатора определяется по аналогии с двухобмоточным трансформатором. Напишем в соответствии с рис. 2-48,а уравнения напряжений:
(2-84)
(2-85)
где ZA = rА + jхА — сопротивление части обмотки А — а;
Zx = rx + jxx — сопротивление части обмотки а — X.
Так как то (2-85) можем переписать в следующем виде:
(2-86)
Заменив в (2-84) и (2-86) через по (2-78а) получим;
(2-87)
(2-88)
Отсюда найдем изменение напряжения для понижающего автотрансформатора:
(2-89)
где = — сопротивление Zx части а — X с числом витков w2, приведенное к числу витков (w1, — w2) части обмотки А — а.
Параметры ZА и Zx могут быть рассчитаны как для двухобмоточного трансформатора, имеющего с первичной стороны (w1 — w2) витков и со вторичной стороны w2 витков при тех же сечениях проводников, размерах сердечника и обмоток, что и для частей обмоток А — а, а — X и сердечника автотрансформатора.
Значение
может быть найдено также по данным опыта короткого замыкания, при котором автотрансформатор следует использовать как двухобмоточный трансформатор: пониженное напряжение (порядка 5—10% от должно быть подведено к части обмотки А — а, а часть обмотки а—X должна быть замкнута накоротко.
Ток короткого замыкания I1к найдем из (2-89), приравняв U2 = 0:
(2-90)
Номинальное напряжение короткого замыкания автотрансформатора