Лекция 19 Особенности современных систем отопления 1 страница

Таблица 3.1. Параметры основных теплоносителей.

  Параметры   Теплоноситель
вода пар воздух
Температура, разность темпера­тур, С 150-70 70-40
Плотность, кг/м3 2.547 I
Удельная теплоемкость, кДж/кгК 1.187 2120Х I
Средняя скорость движения, м/с 0.3-2 40-80 5-20
Относительное сечение труб I 1.5

 

Х Скрытая теплота фазового превращения.

Свойства воды: высокая теплоемкость, высокая плотность, несжимаемость, расширение при нагревании с уменьшением плотности, повышение температуры кипения при повышении давления, выделение абсорбируемых газов при повышении температуры и понижении давления.

Свойства пара: малая плотность, высокая подвижность, высокая энтальпия за счет скрытой теплоты фазового превращения (табл. 3.1), повышение температуры и плотности с возрастанием давления.

Свойства воздуха: низкая теплоемкость и плотность, высокая подвижность, уменьшение плотности при нагревании.

Краткая характеристика параметров теплоносителей для системы отопления приведена в табл. 3.1.


ЛЕКЦИЯ 4

4.1. ОСНОВНЫЕ ВИДЫ, ХАРАКТЕРИСТИКИ И ОБЛАСТЬ ПРИМЕНЕНИЯ СИСТЕМ ОТОПЛЕНИЯ

 
 

Водяное отопление, благодаря ряду преимуществ перед другими системами, получило в настоящее время наиболее широкое распростране­ние. Для уяснения устройства и принципа действия системы водяного отопления рассмотрим схему системы, представленную на рис. 4.1.

Pиc. 4.1 Схема двухтрубной системы водяного отопления с верхней разводкой и естественной циркуляцией

Вода, нагретая в теплогенераторе К до температуры T1 , поступает в теплопровод - главный стояк 1 в подающие магистральные теплопроводы 2. По подающим магистральным теплопроводам горячая вода поступает в подающие стояки 9. Затем по подающим подводкам 13 горячая вода поступает в отопительные приборы 10 , через стенки которых теплота передается воздуху помещения. Из отопительных приборов охлажденная вода с температурой Т2 по обратным подводкам 14, обратным стоякам 11 и обратным магистральным теплопроводам 15 воз­вращается в теплогенератор К, где она снова подогревается до температуры T1 и далее циркуляция происходит по замкнутому кольцу.

Система водяного отопления гидравлически замкнута и имеет определенную вместимость отопительных приборов, теплопроводов, арматуры, т.е. постоянный объем заполняющей ее воды. При повышении температуры воды она расширяется и в замкнутой, заполненной водой системе отопления внутреннее гидравлическое давление может превысить механическую прочность ее элементов. Чтобы этого не произошло, в системе водяного-отопления имеется расширительный бак 4, предназначенный для вмещения прироста объема воды при ее нагревании, а также для удаления через него воздуха в атмосферу, как при заполнении системы водой, так и в период ее эксплуатации. Для регулирования теплоотдачи отопительных приборов на подводках к ним устанавливают регулировочные краны. 12.

Перед пуском в действие каждая система заполняется водой из водопровода 17 через обратную линию до сигнальной трубы 3 в расширительный бак 4 . Когда уровень воды в системе повысится до уровня переливной трубы и вода будет вытекать в раковину, находящуюся в котельной, кран на сигнальной трубе закрывают и прекращают заполнение системы водой.

При недостаточном прогреве приборов вследствие засорения трубопроводов или арматуры, а также в случае появления утечки, вода из отдельных стояков может быть спущена без опорожнения и прекращения заботы других участков системы. Для этого закрывают вентили или краны 7 на стояках. Из тройника 8, установленного в нижней части стояка, вывертывают пробку, и к ш8туцеру стояка присоединяют гибкий шланг, по которому вода из теплопроводов и приборов стекает в канализацию. Чтобы вода быстрее стекала и стекла полностью, из верхнего тройника 8 вывертывают пробку. Представленные на рис. 4.1-4.3 системы отопления называются системами с естественной циркуляцией. В ниx движение воды осуществляется под действием разности плотностей охлажденной воды после отопительных приборов, и горячей воды, поступающей в систему отопления.


Вертикальные двухтрубные системы с верхней разводкой применяют в основном при естественной циркуляции воды в системах отоплении зданий до 3-х этажей включительно. Эти системы по сравнению с системами при нижней разводке подающей магистрали (рис.4.2) имеют большее естественное циркуляционное давление, в них проще воздухоудаление из системы (через расширительный бак).

Рис. 4.2 Схема двухтрубной системы водяного отопления с нижней разводкой и естественной циркуляцией

К—котел, 1—главный стояк: 2, 3, 5 — соединительная, переливная, сигнальная трубы расширительного бака: 4 — расширительный бак. 6 —воздушная линия, 7 — воздухосборник; 8 — подающие подводки: 9 — регулировочные краны у отопительных приборов; 10—отопительные приборы: 11—обратные подводки. 12— обратные стояки (охлажденной воды); 13 — подающие стояка (горячей воды); 14 —тройники с пробкой для спуска воды: 15 — краны или вентили на стояках: I6, 17 — подающий и обратный магистральные теплопроводы. I8—запорные вентили или задвижки на магистральных теплопроводах для регулирования и отключения отдельных веток; 19 — воздушные краны


Рис. 4.3 Схема однотрубной системы водяного отопления с верхней разводкой и естественной циркуляцией

Двухтрубная система с нижним расположением обеих магистралей и естественной циркуляцией перед системой с верхней разводкой имеет преимущество: монтаж и пуск систем может производиться поэтажно по мере возведения здания: удобнее эксплуатация системы, т.к. вентили и краны на подающем и обратном стояках находятся внизу и в одном месте. Двухтрубные вертикальные системы с нижней разводкой применяют в малоэтажных зданиях с кранами двойной регулировки отопительных приборов, что объясняется большой гидравлической оптовой устойчивостью в сравнении с системами с верхней развод-Удаление воздуха из этих систем осуществляется воздушными кранами.

Основное преимущество двухтрубных систем независимо от способа циркуляции теплоносителя - поступление воды с наивысшей температурой T1 к каждому отопительному прибору, что обеспечивает максимальную разность температур T1-T2 и, следовательно, минимальную площадь поверхности приборов. Однако в двухтрубной системе, особенно с верхней разводкой, имеет место значительный расход труб и усложняется монтаж.

По сравнению с двухтрубными системами отопления вертикальные однотрубные системы с замыкающими участками имеют ряд преимуществ: меньшая первоначальная стоимость, более простой монтаж и меньшая длина теплопроводов, более красивый внешний вид. Если приборы, находящиеся в одном помещении, присоединены по проточной схеме к стояку с двух сторон, то у одного из них устанавливают регулировочный кран. Такие системы (применяют в малоэтажных производственных зданиях.

В однотрубных горизонтальных системах отопления горячая вода поступает в отопительное приборы одного и того же этажа из теплопровода, проложенного горизонтально. Регулировка и включение отдельных приборов в горизонтальных системах с замыкающими участкам достигается также легко, как и вертикальных системах. В горизонтальных проточных системах регулировка может быть только поэтажной, что является существенным их недостатком.

 


Рис. 4.4.Системы водяного ото­пления с искусственной циркуляцией - расширительный бак:

2— воздушная сеть; 3 — насос циркуляционный 4 — теплообменник

К основным достоинствам однотрубных горизонтальных систем относятся меньший, чем в вертикальных системах, расход труб, возможность поэтажного включения системы и стандартность узлов. Кроме того, горизонтальные системы не требуют пробивки отверстий в перекрытиях, и монтаж их в сравнении с вертикальными системами гораздо проще. Они довольно широка применяются в производственных и общественных помещениях.

Общими преимуществами систем с естественной циркуляцией воды, предопределяющими в некоторых случаях их выбор, являются относительная простота устройства и эксплуатации; отсутствие насоса и потреб­ности в электроприводе, бесшумность действия; сравнительная долговечность при правильной эксплуатации (до 30-40 лет) и обеспечение равномерной температуры воздуха в помещении в течение отопительного периода.

Однако в системах водяного отопления с естественной циркуляцией естественное давление имеет очень большую величину. Поэтому при большой протяженности циркуляционных колец (>30м), а, следовательно, при значительных сопротивлениях движению воды в них, диаметры трубопроводов по расчету получаются очень большими и система отопления оказывается экономически невыгодной как по первоначальным затратам, так и в процессе эксплуатации.

В связи с изложенным область применения систем с естественной циркуляцией ограничена обособленными гражданскими зданиями, где недопустимы шум и вибрация, квартирным отоплением, верхними (техническими) этапами высоких зданий.

Системы отопления с искусственное циркуляцией принципиально отличаются от систем водяного отопления с естественной циркуляцией тем, что в них в дополнение к естественному давлению, возникающему в результате охлаждения воды в приборах и трубах, значительно большее давление создается циркуляционным насосом, который устанавливается на обратном магистральном трубопроводе у котла, а расширительный бак присоединен не к подающему, а к обратному теплопроводу около всасывающего патрубка насоса. При таком присоединении расширительного бака воздух из системы через него отводиться не может, поэтому для удаления воздуха из сети теплопроводов и отопительных приборов служат воздушные линии, воздухосборники и воздушные краны.

Рассмотрим схемы вертикальных двухтрубных систем отопления с искусственной циркуляцией (рис.4,4). Слева показана система с верхним расположением подающей магистрали, а справа - система с нижним расположением обеих магистралей. Обе системы отопления относятся к так называемым тупиковым системам, в которых нередко получается большая разница в потере давления в отдельных циркуляционных кольцах, т.к. длины их разные: чем дальше расположен прибор от котла, тем большую протяженность имеет кольцо этого прибора. Поэтому в системах искусственной циркуляцией, особенно при большой протяженности теплопроводов, целесообразно применять попутное движение воды в подающих и охлаждающих магистралях по схеме, предложенной проф. В.М.Чаплиным. По этой схеме длина всех циркуляционных колец почти одинакова, вследствие чего легко получить равную потерю давления в них и равномерный прогрев всех приборов. СНиП рекомендует такие системы устраивать при числе стояков в ветви более 6. Недостатком этой системы по сравнению с тупиковой является несколько большая общая длина теплопроводов, и, как следствие, большая на 3-5% первоначальная стоимость системы.

 
 

В последние годы широко применяют однотрубные системы отопления с нижней прокладкой магистралей горячей и охлажденной воды искусственной циркуляцией воды .

Рис.4.5 Схема двухтрубной системы водяного отопления с верхней разводкой и попутным движением воды в подающей и обратной магистралях и искусственной циркуляцией

1-теплообменник; 2, 3, 4, 5—циркуляционная, соединительная, сигнальная переливная трубы расширительного бака: 6— расширительный бак; 7—подающий магистральный теплопровод: 8—воздухосборник; 9—отопительный прибор; 1О—кран двойной регулировки: 11—обратный теплопровод; 12—насос

Стояки систем по схемам б разделяются на подъемные и опускные. Стояки систем по схемам а, в и г состоят из подъемного и опускного участков, по верхней части, обычно под полом верхнего этажа, они соединяются горизонтальным участком. Стояки прокладывают на рассто­янии 150мм от края оконного проема. Длина подводок к нагревательным приборам принимается стандартной - 350мм; отопительные приборы смещены от оси окна в сторону стояка. Для регулирования теплопередачи отопительных приборов устанавливают трехходовые краны типа КРТП, а при смещенных замыкающих участках - шиберные краны пониженного гидравлического сопротивления типа КРПШ.

Однотрубная система с нижней разводкой удобна для зданий с бесчердачным перекрытием, она обладает повышенной гидравлической и те­пловой устойчивостью. Преимущества однотрубных систем отопления заключаются в меньшем диаметре труб, благодаря большему давлению, создаваемому насосом; большем радиусе действие; более простом монтаже, большей возможности унификации деталей теплопроводов, приборных узлов

 


Рис. 4.6 Разновидности (а, б, в, г) однотрубных систем водяного отопления с нижней разводкой

К недостаткам однотрубных систем относится перерасход отопительных приборов по сравнению с двухтрубными системами отопления.

Область применения однотрубных систем отопления разнообразная: жилые и общественные здания с числом этажей более трех, производственные предприятия и т.д.

 

4.2. ВЫБОР СИСТЕМЫ ОТОПЛЕНИЯ

Систему отопления выбирают в зависимости от назначения и режима эксплуатации здания. Учитывают требования, предъявляемые к системе. Принимают во внимание категории пожаровзрывоопасности помещений.

Главным фактором, определяющим выбор системы отопления, является тепловой режим основных помещений здания.

Учитывая экономические, заготовительно-монтажные и некоторые эксплуатационные преимущества, СНиП 2.04.05-86, п.3.13 рекомендует проектировать, как правило, однотрубные системы водяного отопления из унифицированных узлов и деталей; при обосновании допускается применение двухтрубных систем.

Тепловой режим помещений одних зданий необходимо поддерживать неизменным в течение всего отопительного сезона, других зданий можно изменять для сокращения трудозатрат с суточной и недельной периодичностью, на время праздников, проведения наладочных, ремонтных других работ.

Гражданские, производственные и сельскохозяйственные здания с постоянным тепловым режимом можно разделить на 4 группы:

здания больниц, родильных домов и тому подобных лечебно-профилактических учреждений круглосуточного использования (кроме психиатрических больниц), к помещениям которых предъявляются повышенные санитарно-гигиенические требования;

2) здания детских учреждений, жилые, общежития, гостиницы, дома отдыха, санатории, пансионаты, поликлиники, амбулатории, аптеки, психиатрические больницы, музеи, выставки, библиотеки, бани, книгохранилища;

3) здания плавательных бассейнов, вокзалов, аэропортов;

4) здания производственные и сельскохозяйственные при непрерывном технологическом процессе.

Например, в зданиях второй группы предусматривают водяное отопление с радиаторами и конвекторами (кроме больниц и бань). Предельную температуру теплоносителя воды принимают в двухтрубных системах. равной 95°С, в однотрубных системах зданий (кроме бань, больниц детских учреждений) - 105°С (при конвекторах с кожухом до 130°С). Для отопления лестничных клеток возможно повышение расчетной температуры до 150°С. В зданиях с круглосуточной действующей приточной вентиляцией, в первую очередь в зданиях музеев, картинных галерей, книгохранилищ, архивов (кроме больниц и детских учреждений) устраивают центральное воздушное отопление.

Основные рекомендации по выбору системы отопления теплоносителя его параметров приведены в СНиП 2.04.05-96.

Системы отопления следует проектировать с насосной циркуляцией, нижней разводкой, тупиковые с открытой прокладкой стояков в первую очередь.


 

Остальные системы принимаются в зависимости от местных условий: архитектурно-планировочного решения, требуемого теплового режима, параметров теплоносителя в наружной тепловой сети и т.д.

 

ЛЕКЦИЯ 5

5.1. Классификация и материал теплопроводов

Трубы систем центрального водяного и парового отопления предназначены для подачи в приборы и отвода из них необходимого количества теплоносителя; поэтому их называют теплопроводами. Теплопроводы вертикальных систем отопления подразделяют на магистрали, стояки и подводки (рис. 5.1). Теплопроводы горизонтальных систем, кроме магистралей, стояков и подводок, имеют горизонтальные ветви (рис. 5.2).

 
 

Движение теплоносителя в подающих (разводящих) и обратных (сборных) магистралях может совпадать по направлению или быть встречным. В зависимости от этого системы отопления называют системамиступиковым (встречным) ипопутным движением воды в магистралях. На рис. 5.1, а и 5.2, а стрелками на линиях, изображающих магистрали (линии с индексом Т1 — подающие, с индексом Т2 — обратные магистрали), показано попутное движение теплоносителя: теплоноситель в подающей и обратной магистралях каждой системы движется в одном направлении. На рис. 5.1, б, в и 5.2, б показано тупиковое движение теплоносителя: теплоноситель в подающей магистрали течет в одном, а в обратной — в противоположном направлении

Рис. 5.1. Теплопроводы вертикальных систем центрального отопления с верхней разводкой (а), с нижней разводкой (б), с «опрокинутой» циркуляцией воды (в)

 
 

1 и 2 — подающие (Т1) и обратные (Т2) магистрали; 3 и 4 - подающие и обратные стояки; 5 и 6 -— подающие и обратные подводки, 7 - отопительные приборы (стрелками показано направление движения теплоносителя)

Рис. 5.2.Теплопроводы горизонтальных систем водяного отопления с нижней (а) и верхней разводкой (б)

I и 2 — подающие (Т1) и обратные (Т2) магистрали; 3 и 4 - подающие и обратные стояки; 5 и 6 - подающие и обратные подводки, 7 - отопительные приборы; 8 - однотрубные ветви; 9 - бифилярные ветви (стрелками показано направление движения теплоносителя)

В зависимости от места прокладки магистралей различают системы сверхней разводкой (см. рис. 5.1, а и 5.2, б), когда подающая (разводящая теплоноситель) магистраль (Т1) расположена выше отопительных приборов; с нижней разводкой (см. рис. 5.1, б и 5.2, а), когда и подающая (Т1), и обратная (Т2) магистрали проложены ниже приборов. При водяном отоплении бывают еще системы с «опрокинутой» циркуляцией воды (см. рис. 5.1, в), когда подающая магистраль (Т1) находится ниже, а обратная (Т2) выше приборов.

Для пропуска теплоносителя используют трубы: металлические (стальные, медные, свинцовые и др.) и неметаллические (пластмассовые, стеклянные и др.).

Из металлических труб наиболее часто используют стальные шовные (сварные) и редко стальные бесшовные (цельнотянутые) трубы. Стальные трубы изготовляют из мягкой углеродистой стали, что облегчает выполнение изгибов, резьбы на трубах и различных монтажных операций. Стоимость бесшовных труб выше, чем сварных, но они более надежны в эксплуатации и их рекомендуется использовать в местах, не доступных для ремонта.

Широкое применение стальных труб в системах центрального отопления объясняется их прочностью, простотой сварных соединений, близким соответствием коэффициента линейного расширения коэффициенту расширения бетона, что важно при заделке труб в бетон (например, в бетонных панельных радиаторах). Перспективно применение гибких стальных труб с защитной пластмассовой оболочкой.

Медные трубы отличаются долговечностью, но они менее прочны и дороже стальных. Свинцовые и чугунные трубы встречаются в системах отопления, смонтированных в начале XX в.

Термостойкие пластмассовые трубы обладают пониженным коэффициентом трения, вследствие чего снижается их гидравлическое сопротивление, они не зарастают и не подвержены коррозии. Гибкость пластмассовых труб, простота их обработки значительно облегчают монтаж, пониженная теплопроводность уменьшает теплопотери через их стенки. Внедрение пластмассовых труб в отопительную технику ограничивается повышенной стоимостью термостойких их видов, которые не размягчаются или не изменяют свою структуру (не «стареют») при длительном взаимодействии с теплоносителем.

В системах отопления используют неоцинкованные (черные) стальные сварныеводогазопроводные трубы (ГОСТ 3262—75*) Dy=10—50 мм трех типов: легкие, обыкновенные и усиленные (в зависимости от толщины стенки). Усиленные толстостенные трубы применяют редко — в уникальных долговременных сооружениях при скрытой прокладке. Легкие тонкостенные трубы предназначены под сварку или накатку резьбы для их соединения при открытой прокладке в системах водяного отопления. Обыкновенные трубы используют при скрытой прокладке и в системах парового отопления.

Размер водогазопроводной трубы обозначается цифрой условного диаметра в мм (например, Dy=20). Водогазопро-водная труба Dy20 имеет наружный диаметр 26,8мм, а ее внутренний диаметр изменяется в зависимости от толщины стенки от 20,4 (усиленная труба) до 21,8мм (легкая труба). Изменение внутреннего диаметра влияет на площадь поперечного сечения «канала» для протекания теплоносителя. Поэтому одно и то же количество теплоносителя будет двигаться в трубе одного и того же условного диаметра с различной скоростью: большей — в усиленной и меньшей—в легкой трубе.

Стальные электросварные трубы (ГОСТ 10704—76*) выпускают со стенками различной толщины. Поэтому в условном обозначении выбранной трубы указывают наружный диаметр и толщину стенки (если выбрана труба 76 Х х2,8 мм, то это означает, что она имеет наружный диаметр 76мм, толщину стенки 2,8мм и, следовательно, внутренний диаметр 70,4мм). При этом стенку принимают наименьшей толщины (по сортаменту труб, выпускаемых заводами). Например, используют трубы Dy20 со стенкой толщиной 2,0мм (легкая водогазопроводная труба Dy20 имеет стенку толщиной 2,5мм).

Стальные трубы, применяемые в системах центрального отопления, выдерживают, как правило, большее гидростатическое давление (не менее 1 МПа), чем отопительные приборы и арматура. Поэтому предельно допустимое гидростатическое давление в системе водяного отопления устанавливают по рабочему давлению, на которое рассчитаны не трубы, а другой менее прочный элемент (например, отопительные приборы).

Соединение теплопроводов между собой, с отопительными приборами и арматурой может быть неразборным — сварным и резьбовым — и разборным (для ремонта отдельных частей) — резьбовым и болтовым. Резьбовое разборное соединение предусматривают в основном у отопительных приборов и арматуры для их демонтажа в случае необходимости. Фланцевая арматура крупного размера и чугунные ребристые трубы соединяются болтами с контрфлан­цами, привариваемыми к концам стальных труб.

5.2. Размещение теплопроводов в здании

Прокладка труб в помещениях может быть открытой и скрытой. В основном применяютоткрытую прокладку как более простую и дешевую. Поверхность труб нагрета, и теплоотдачу труб принимают в расчет при определении площади отопительных приборов.

По технологическим, гигиеническим или архитектурно-планировочным требованиям прокладка труб может быть скрытой: магистрали переносят в технические помещения (подвальные, чердачные и т. п.), стояки и подводки к отопительным приборам размещают в специально предусмот­ренных шахтах и бороздах (штробах) в строительных конструкциях или встраивают (замоноличивают) в них. При этом в местах расположения разборных соединений и ар­матуры устраивают лючки. Теплоотдача в помещение труб, проложенных в глухих бороздах стен, значительно меньше (примерно вдвое) теплоотдачи открытых теплопроводов. Встроенные (как правило, в заводских условиях) подводка или стояк играют роль бетонного отопительного прибора с одиночным греющим элементом и односторонней (в наружной стене) или двусторонней (во внутренней стене, в полу или в перекрытии) теплоотдачей.

При прокладке теплопроводов учитывают предстоящее изменение длины труб в процессе эксплуатации системы отопления. Эксплуатация проходит при изменяющейся температуре теплоносителя (выше 35 °С) и трубы удлиняются по сравнению с монтажной их длиной в большей или меньшей стегни.

Температурное удлинение нагреваемой трубы — приращение ее длины ∆l, м, определяется по формуле

∆l=a(tт-tн) l, (5.1)

где о — коэффициент линейного расширения материала трубы (для мягкой стали при температуре до 150 °С близок к 1,2-Ю-6); ^ — температура теплопровода, близкая к температуре теплоносителя, CC (при расчетах учитывают наивысшую температуру); <g—температура окружающего воздуха в период производства монтажных работ, °С; / — длина теплопровода, м.

Монтаж труб осуществляют в «коробке» строящегося здания при температуре наружного воздуха, близкой в весенне-осенний период к +5 °С. В зимний период при временном обогревании помещений для удобства отделоч­ных и монтажных работ в строящемся здании поддержи­вают временными средствами температуру также около +5°С.

Если считать tн=5°С, то формула (5.1) для стальной трубы (приращение длины ∆l, мм) может быть представ­лена в виде

∆l=1,2·10-2(tт – 5) l, (5.2)

удобном для ориентировочных расчетов.

Можно установить, что 1м подающей стальной трубы предельно удлиняется при низкотемпературной воде приблизительно на 1мм, обратной трубы — на 0,8мм, а при высокотемпературной воде удлинение каждого метра трубы доходит до 1,75мм.

Таким образом, при размещении теплопроводов, осо­бенно при перемещении по ним высокотемпературного теплоносителя, необходимо предусматривать компенсацию усилий, возникающих при удлинении подводок, стояков и магистралей.

Размещение подводки — соединительной трубы между стояком или горизонтальной ветвью и прибором — зависит от вида отопительного прибора и положения труб в системе отопления.

 
 

Для большинства приборов подающую подводку, по которой подается горячая вода или пар, и обратную подводку, по которой охлажденная вода или конденсат отводятся из приборов, прокладывают горизонтально (при длине до 500мм) или с некоторым уклоном (5—10 мм на всю длину). Эти подводки в зависимости от положения

Рис. 5.3. Этажестояки вертикальной однотрубной системы водяного отопления с трехходовыми кранами у приборов

а - с приоконным размещением стояка и радиатором (вертикальные оси окна и радиатора совпадают); б - с эамоноличенным стояком и конвектором (конвектор смещен к стояку от вертикальной оси окна); l – приоконный стояк; 2 — радиатор; 3 - замоноличенный стояк; 4 — конвектор

продольной оси прибора по отношению к оси труб могут быть прямыми и с отступом, называемым «уткой». Предпочтение отдают прямой прокладке подводок, так как утки осложняют заготовку и монтаж труб, увеличивают гидрав­лическое сопротивление подводок.

Для унификации деталей подводок и стояков, как известно, используют односторонние горизонтальные подводки постоянной длины (например, 370мм) независимо от ширины простенка в здании. При этом стояк однотрубной системы размещают на расстоянии 150мм от откоса оконного проема, а не по оси простенка как при двусторонних подводках. Особенно широко применяют унифицированные приборные узлы в жилых домах, гостиницах, общежитиях, во вспомогательных зданиях предприятий, где приборы для уменьшения длины подводок допустимо смещать от вертикальной оси оконных проемов по направлению к стояку (рис. 5.3).

Для некоторых отопительных приборов (например, конвекторов напольного типа) подводки могут прокладываться снизу вверх с изгибом.

Компенсацию удлинения труб в горизонтальных ветвях однотрубных систем предусматривают путем изгиба подводок (добавления уток) с тем, чтобы напряжение на изгиб в отводах труб не превышало 80 МПа; в ветвях между каждыми пятью-шестью приборами вставляют П-образные компенсаторы, которые рационально размещать в местах пересечения разводящей трубой внутренних стен и перегородок помещений.

В вертикальных системах отопления подводки к приборам в большинстве случаев выполняют напрямую, однако в высоких зданиях делают специальный изгиб подводок к приборам для обеспечения беспрепятственного перемещения труб стояка при удлинении.

При длинных гладкотрубных приборах, а также при последовательной установке нескольких приборов другого типа (например, «на сцепке») необходим также специальный изгиб подводок для компенсации температурного удлинения приборов и труб. Неполная компенсация удлинения труб приводит при эксплуатации системы к возникновению течи в резьбовых соединениях, а иногда даже к излому труб и арматуры.