Лекция 19 Особенности современных систем отопления 4 страница

Справа на рис. 6.2 даны: сверху — теплопроводы си­стемы отопления от сборного до распределительного коллекторов с циркуляционным насосом 8 и присоединенным расширительным баком; снизу — линия для заполнения (и пополнения при утечке) системы деаэрированной водой, забираемой из наружных теплопроводов. Подпиточный насос 10 на этой линии устанавливают, как известно, только тогда, когда гидростатическое давление в системе отопления превышает давление в наружных теплопроводах. Действует этот насос периодически с автоматическим управлением в зависимости от изменения уровня воды в расширительном баке.

Для нагревания воды до температуры tг. служиттеплообменник. В настоящее время применяют теплообменники так называемого скоростного типа, состоящие из стандартных секций длиной 2 и 4м. Каждая секция представляет собой стальную трубу диаметром от 50 до 300мм, внутрь которой помещены несколько латунных трубок диаметром 16х1 мм. Греющая вода из наружного теплопровода пропускается по латунным трубкам, нагреваемая из системы отопления — противотоком в межтрубном пространстве.

Принципиальная схема местного теплового пункта при зависимом присоединении системы водяного отопления к наружным теплопроводам со смешением воды при помощи водоструйного элеватора дана на рис. 6.3. Показаны смесительный аппарат, основные контрольно-измерительные и другие приборы и арматура, применяемые в тепловых пунктах, относящихся не только к системе отопления, но и к системам приточной вентиляции и горячего водоснабжения. На подающем теплопроводе высокотемпературной воды (температура t1) помещен регулятор расхода (РР), предназначенный для стабилизации расхода воды в системе отопления при неравномерном отборе ее через ответвления 4. Если применяется автоматизированный водоструйный элеватор, то вместо РР предусматривается регулирующий клапан для получения заданной температуры воды< поступающей в систему отопления. Следовательно, в этом случае при смешивании воды обеспечивается местное качественное регулирование работы системы отопления.

На рисунке показан также регулятор давления (РД), поддерживающий давление «до себя», необходимое для заполнения системы отопления водой, и препятствующий вытеканию воды из системы (как и обратный клапан 6 на подающем теплопроводе) при аварийном опорожнении наружных теплопроводов.

Манометры, размещаемые попарно на одном и том же уровне от пола, позволяют судить не только о гидростатическом давлении в каждом теплопроводе, но и о разности давления, определяющей интенсивность движения теплоносителя. Тепломер на обратном теплопроводе предназначен для учета общих теплозатрат в здании.


Рис. 6.3. Принципиальная схема местного теплового пункта при зависимом присоединении системы водяного отопления в наружным теплопроводам со смешением воды с помощью водоструйного элеватора

1 — задвижка; 2 — грязевик; 3 — термометр; 4 — ответвления к системам вентиляции и горячего водоснабжения; 5 — регулятор расхода; 6 — обратный клапан; 7 — водоструйный элеватор; 8 — манометры; 9 — тепломер; 10 — регулятор давления

 


Рис. 6.4 Принципиальная схема местного теплового пункта при зависимом прямоточном присоединении системы водяного отопления к наружным теплопроводам

1 — задвижка; 2 — грязевик; 3 — термометр; 4 — манометры; 5 — регулирующий клапан; 6 — обратный клапан; 7 — тепломер; 8 — регулятор давления

Для смешивания высокотемпературной и охлажденной (температура tо) воды вместо водоструйных элеваторов применяют также центробежные насосы

Принципиальная схема местного теплового пункта при зависимом прямоточном присоединении системы водяного отопления к наружным теплопроводам изображена на рис. 6.4. Схема отличается от предшествующей (см. рис. 6.3) отсутствием смесительного аппарата (водоструйного элеватора). Горячая вода по подающему теплопроводу непосредственно поступает в систему отопления. Клапан 5 на. этом теплопроводе предназначен для регулирования расхода греющей воды в системе. Температура и разность давления воды на вводе теплопроводов в здание контролируются по показаниям термометров и манометров. Применяются, как и в схеме на рис. 6.3, регулятор давления «до себя» на обратном теплопроводе и обратный клапан на подающем, а также тепломер для учета теплозатрат в системе отопления.

 

6.2. Циркуляционный насос системы водяного отопления

Насос, действующий в замкнутых кольцах системы отопления, заполненных водой, воду не поднимает, а только ее перемещает, создавая циркуляцию, и поэтому называетсяциркуляционным. В отличие от циркуляционного насоса, насос в системе водоснабжения перемещает воду, поднимая ее к точкам разбора. При таком использовании насос называютповысительным.

В процессах заполнения и возмещения потери (утечки) воды в системе отопления циркуляционный насос не участвует; заполнение происходит под воздействием давления в наружных теплопроводах, в водопроводе или, если этого давления недостаточно, с помощью специальногоподпиточного насоса.

Циркуляционный насос включают, как правило, в обратную магистраль системы отопления для увеличения срока службы деталей, взаимодействующих с горячей водой. Вообще же для создания циркуляции воды в замкнутых кольцах местоположение циркуляционного насоса безразлично. При необходимости несколько понизить гидростатическое давление в теплообменнике или котле насос может быть включен и в подающую магистраль системы отопления, если, конечно, его конструкция рассчитана на перемещение более горячей воды.

Мощность циркуляционного насоса определяется количеством перемещаемой воды и развиваемым при этом давлением.

Количество воды, подаваемой насосом за данный промежуток времени, отнесенное к этому промежутку (обычно к 1 ч), называют подачей насоса Lн, м3/ч. В технике отопления объемную подачу насосом горячей воды заменяют массовым расходом Gн, не зависящим от температуры воды,

Gн=ρLн (6.1)

 

Для циркуляционного насоса, включенного в магистраль, расход перемещаемой воды Gн равен расходу воды в системе отопления Gc, т. е.

Gн=Gс (6.2)

 

Общий расход воды Gc, кг/с, составляет

(6.3)

 

где Qc—тепловая мощность системы отопления ,Вт; с— удельная массовая теплоемкость воды, Дж/(кг°С); tг и tо - расчетная тем­пература подающей и обратной воды в системе отопления, °С.

На практике пользуются расходом воды, перемещаемым в течение 1 ч. И общий расход воды в системе

Gс, кг/ч, определяют по преобразованной формуле (6.3)

[при с=4187 Дж/(кг.°С)]

Gc=0,86Qc/(tг-to). (6,3а)

 

Циркуляционным давлением насоса называют создаваемое насосом повышение давления в потоке воды, необходимое для преодоления сопротивления ее движению в системе отопления, в которую он включен. Циркуляционное давление насоса обозначают ∆Рн и выражают в ньютонах на квадратный метр (Н/м2) или, короче, в паскалях (Па). В отличие от циркуляционного давления напор насоса обозначают буквой Н и выражают в метрах (м). Численно циркуляционное давление как удельная энергия, сообщаемая насосом воде в системе отопления (отнесенная к единице объема, перемещаемого в 1 с), равняется разности полного гидравлического давления при выходе воды из нагнетательного патрубка и при входе во всасывающий патрубок насоса

(6.4)

где Рнаг, Рвс — гидростатическое давление в потоке воды, Па;

Wнаг, Wвс — скорость потока воды, м/с; hнаг-hвс — разность уровней выхода и входа воды в насос, м (индекс «наг» относится к нагнетательному, индекс «вс» — к всасывающему патрубку насоса).

Практически циркуляционное давление насоса считают равным разности гидростатического давления в нагнетательном и всасывающем патрубках

∆Рн=Рнаг-Рвс (6.4а)

пренебрегая различием в Wнаг и Wвс, hнаг и hвс

Возможны три случая определения необходимого значения ∆Рн.

В вертикальной системе насосного водяного отопления всегда действует, помимо давления, создаваемого насосом, естественное циркуляционное давление (∆Ре). Следовательно, если потери давления при циркуляции воды в системе известны (обозначим их ∆Рс), то необходимое цир­куляционное давление насоса ∆Рн должно составить

∆Рн=∆Рс-∆Ре (6.5)

В этомпервом случае определения значения ∆Рн по формуле (6,5) потери давления при циркуляции воды в системе отопления ∆Рс получают из гидравлического расчета. Как известно, потери зависят от скорости движения воды в трубах, для которой существует предел повышения» связанный с экономическим и акустическим ограничениями.

Экономия капитальных вложений в систему, связанная с уменьшением диаметра труб при повышении скорости, целесообразна до определенного предела (около 1,5 м/с в жилых зданиях) — пока она перекрывает увеличение эксплуатационных затрат на электроэнергию, расходуемую насосом.

Акустическое ограничение скорости связано с возникно­вением шума при движении воды через арматуру систем отопления, недопустимого во многих зданиях по их назначению (например, в жилых зданиях). Поэтому в СНиП установлена предельно допустимая скорость движения воды в трубах систем отопления, связанная в назначением здания и видом применяемой в системе арматуры.

Следовательно, проводя гидравлический расчет при скорости движения воды в трубах, равной или близкой к предельно допустимой, можно получить бесшумную, достаточно экономную по капитальным затратам систему. Затем, определив потери давления в ней (включая потери в трубах и оборудование теплового пункта), найти значение ∆Рн по формуле (6.5).

Во втором случае значение ∆Рн можно получить, заранее выбрав типоразмер насоса. Тогда, добавив к нему естест­венное циркуляционное давление ∆Ре, определяют исходное значение циркуляционного давления для проведения гидравлического расчета.

Возможен итретий случай, относящийся к зависимым схемам присоединения систем отопления. В этом случае значение ∆Р, фактически задается как разность давления в наружных теплопроводах в месте ввода их в здание.

Здесь, в частности, возможно присоединение системы к наружным теплопроводам через водоструйный элеватор. Тогда ∆Рн определяют формуле (6.20). В практических расчетах для выбора значения ∆Рн, Па, часто используют соотношение

∆Р=100∑l (6.6)

 

в котором принимается средняя потеря давления 100 Па на 1м длины основного циркуляционного кольца системы (длина кольца ∑l, м).

Выбор насосного давления по выражению (6.6) предопределяет понижение скорости движения воды в трубах не менее чем в 3 раза против предельно допустимой. Это не только увеличивает металлоемкость и стоимость (вслед­ствие увеличения диаметра труб), но и приводит к отрицательным явлениям при действии системы отопления — нарушению гидравлического режима и понижению тепловой устойчивости. Поэтому соотношение (6.6) следует применять только для системы отопления о водоструйным эле­ватором, работающим при высоком значении коэффициента смешения.

В системах отопления применяютспециальные циркуляционные насосы, перемещающие значительное количество воды и развивающие сравнительно небольшое давление. Это малошумные горизонтальные лопастные насосы центробежного, осевого или диагонального типа, соеди­ненные в единый блок с электродвигателями и закрепляемые непосредственно на трубах (без фундамента).

Примером центробежного циркуляционного насоса является насос типа ЦВЦ, разработанный для подачи от 2,5 до 25 т воды в 1 ч при максимальном гидростатическом давлении в корпусе 1 МПа. Насос сблокирован с горизонтальным электродвигателем (рис. 6.5) и развивает циркуляционное давление от 20 до 92 кПа. Вал двигателя с рабочим колесом насоса, а также ротор двигателя вращаются в подшипниках с водяной смазкой.

Каждый насос обладает собственной, только ему присущей характеристикой, получаемой в процессе стендовых испытаний опытного образца при определенной частоте вращения электродвигателя. Характеристика выражает зависимость между расходом насоса Gн и соответственно циркуляционным давлением ∆Рн КПД , ηн мощностью насоса Nн

По характеристикам насоса (рис. 6.6) можно отметить постепенное уменьшение циркуляционного давления и увеличение потребляемой мощности по мере возрастания

Рис. 6.5. Центробежный цир­куляционный насос типа ЦВЦ

1 — корпус; 2 — нагнетательный патрубок; 3—контрфланец для присоединения трубы; 4 — электродвигатель

Рис. 6.6 Характеристики циркуляционного насоса (КПД, давление, мощность) и характеристика системы отопления (пунктирная линия)

расхода, а также существование максимального значения КПД при определенном расходе воды, перемещаемой насосом (точка Б). Часть кривой изменения ∆Рн соответствующая высоким значениям КПД (отмечена на рис. 6.6 жирной линией), носит название рабочего отрезка характеристики насоса. Для обеспечения расчетных параметров, бесшумности и экономии электроэнергии при действии насоса рекомендуется при его выборе ориентироваться на одну из точек в пределах рабочего отрезка характеристики. Все такие точки также называютсярабочими.

Рабочая точка А представляет собой точку пересечения рабочего отрезка характеристики насоса с характеристикой системы отопления, выражаемой параболой (пунктирнаялиния). Насос при расходе воды Gн=Gс [формула (6.3)] создает в рабочей точке А определенное циркуляционное давление ∆Рн, действует с максимальным КПДη и (точка Б) и обладает мощностью Nн (точка В). На рисунке изображен идеальный случай, когда насос не только действует с мак­симальным КПД, но и создает циркуляционное давление ∆Рн=∆Рс [без учета естественного циркуляционного дав­ления в системе отопления — см. формулу (6.5)].

При отсутствии бесфундаментных насосов для создания циркуляции в системах водяного отопления применяют высоконапорные центробежные насосы общепромышленного назначения. Высоконапорный насос уступает бесфундаментному насосу по ряду монтажных и эксплуатационных показателей: его необходимо устанавливать на фундамент, он создает излишний шум, вызывает вибрацию труб и строительных конструкций, при его применении возрастает расход электроэнергии, требуется обводная труба для сохранения циркуляции воды при остановке.

Центробежные насосы общепромышленного назначения часто не подходят по каталожным показателям для систем отопления. Приходится искусственно изменять развиваемое ими давление для обеспечения необходимого расхода воды в системе. На рис. 6.7 показан случай применения в системе отопления насоса, создающего давление ∆Рн>∆Рc. Характеристика системы, проведенная через точку Б с известными координатами Gc и ∆Рc (пунктирная линия 2), пересекает характеристику насоса 1 в рабочей точке В. В этих условиях насос будет перемещать воды Gн-=' (>Gc), развивать давление ∆Рн=∆Р’с(>∆Рc) и увеличивать расход электроэнергии.

Значительное увеличение расхода воды в системе отопления против расчетного нежелательно, так как при этом в нем, помимо возрастания расхода электроэнергии, возникнет гидравлическое и тепловое разрегулирование. Поэтому путем введения дополнительного сопротивления, выраженного на рис. 6.7 ординатой А—Б (в виде, например, диафрагмы между фланцами задвижки у насоса или трубной вставки малого диаметра), характеристику системы отопления следует изменить таким образом, чтобы получить новую рабочую точку А (в месте пересечения новой характеристики системы 3 с характеристикой насоса 1). В точке А расход насоса равен расчетному расходу воды в системе (Gн=Gс), а давление насоса соответствует потерям давления в ней после регулирования. Более целесообразен в этом случае гидравлический перерасчет системы отопления с увеличением потерь давления в стояках.

Рис. 6.7. Схема выбора циркуляционного насоса при ∆Рн>∆Рc

1 — характеристика давления, развиваемогонасосом; 2 и 3 — характеристики системы отопления до и после регулирования

Циркуляционный насос можно также, как уже сказано, выбирать по заводским характеристикам исходя из общего расхода воды в системе отопления, и тогда давление, развиваемое насосом в рабочей точке характеристики, принимать за исходное при гидравлическом расчете системы.

В обратную магистраль системы отопления включают два одинаковых циркуляционных насоса, действующих попеременно: при работе одного из них второй находится в резерве. Присоединение труб к циркуляционным насосам различно для бесфундаментных (рис. 6.8, а) и общепромышленных (рис. 6.8, б) насосов. Во втором случае на рисунке показано дополнительное оборудование: обводная труба 6 с задвижкой, нормально закрытой, виброизолирующие вставки 5 (резиновые длиной около 1м, армированные спиральной проволокой), неподвижные опоры 4, препятствующие осевому растяжению резиновых вставок. Фундаменты общепромышленных насосов и электродвигателей также снабжают виброизолирующими прокладками и опорами.

Задвижки до и после обоих насосов (действующего и бездействующего) постоянно открыты, особенно если предусмотрено автоматическое переключение насосов (например, после непрерывного суточного действия). Обратный клапан препятствует циркуляции воды через бездействующий насос (предотвращает, как говорят, работу насоса «на себя»).

Легко монтируемые бесфундаментные насосы иногда устанавливают в системе отопления по одному. При этом резервный насос хранят на складе близ теплового пункта и оборудуют сигнализацию о состоянии циркуляции воды в системе.


Рис. б. 8. Схемы присоединения труб к циркуляционным бесфундаментным (а) и общепромышленным (6) насосам

1 — насос. 2 — задвижка; 3 - обратный клапан; 4 — неподвижные опоры: 5 — виброизолирующие вставки; 6 — обводная труба о задвижкой (нормально закрыта)

Мощность насоса пропорциональна произведению секундной подачи на создаваемое циркуляционное давление. Мощность электродвигателя Nэ, Вт, определяется с учетом КПД насоса ηн и необходимого запаса мощности k по формуле

Nэ=kLн∆Pн/3600ηн (6.6)

Где Lн – подача насоса, м3/ч; ∆Pн —давление насоса, Па(Н/м2).

Коэффициент запаса k, учитывающий пусковой момент, получает наибольшее значение (до 1,5) при минимальной мощности электродвигателя.

 

6.3. Смесительная установка системы водяного отопления

Смесительную установку (смесительный насос или водоструйный элеватор) применяют в системе отопления для понижения температуры воды, поступающей из наружного подающего теплопровода, до температуры, допустимой в системе tг. Понижение температуры происходит при сме­шении высокотемпературной воды t1, с обратной (охлажденной до температуры to) водой местной системы отопления.

Смесительную установку используют также для местного качественного регулирования теплопередачи отопительных приборов системы, дополняющего центральное регулирование на тепловой станции. При местном регулировании путем автоматического изменения по заданному температурному графику температуры смешанной воды в обогреваемых помещениях поддерживаются оптимальные тепловые условия. Кроме того, исключается перегревание помещений, особенно в осенний и весенний периоды ото­пительного сезона. При этом сокращается расход тепловой энергии.

Высокотемпературная вода подается в точку смешения под давлением в наружном теплопроводе, созданным сете­вым циркуляционным насосом на тепловой станции. Количество высокотемпературной воды G1 при известной тепловой мощности системы отопления Qc будет тем меньше, чем выше температура t1

(6.7)

где t1 температура воды в наружном подающем теплопроводе, °С.

Поток охлажденной воды, возвращающейся из местной системы отопления, делится на два: первый в количестве Go направляется к точке смешения, второй в количестве G1 — в наружный обратный теплопровод. Соотношение масс двух смешиваемых потоков воды — охлажденной Go и высокотемпературной Gi называюткоэффициентом смешения

u=Go/G1 (6.8)

Коэффициент смешения может быть выражен через тем­пературу воды [с использованием формул (6.3) и (6.7)]

(6.9)

 

Рис. 6. 10. Принципиальные схемы смесительной установки с насосом на перемычке между магистралями систем отопления (а), на обратной магистрали (б), на подающей магистрали (в)


1 – смесительный насос; 2 – регулятор температуры; 3 – регулятор расхода воды в системе отопления.

Рис. 6.11. Схемы изменения циркуляционного давления в зависимой системе отопления со смесительным насосом, включенным в перемычку между магистралями (а), в обратную (б) и подающую магистрали (в)

1 — смесительный насос; 2 и 3— давление в наружных соответственно подающем и обратном теплопроводах; А—точка смешения; Б — точка деления потоков воды

Например, при температуре воды t1=150°, tг==95° и tо=70 °С коэффициент смешения смесительной установки u=(150—95) : (95—70)=2,2. Это означает, что на каждую единицу массы высокотемпературной воды должно подме­шиваться 2,2 единицы охлажденной воды.

Смешение происходит в результате совместного действия двух аппаратов — циркуляционного сетевого насоса на тепловой станции и смесительной установки (насоса или водоструйного элеватора) в отапливаемом здании.

Смесительный насос можно включать в перемычку Б—А между обратной и подающей магистралями (рис. 6.10, a) и в обратную (рис. 6.10, б) или подающую магистраль (рис. 6.10, в) системы отопления. На рисунке показаны регуляторы температуры 2 и расхода воды 3 для местного качественно-количественного регулирования системы отопления в течение отопительного сезона.

Смесительный насос, включенный в перемычку, подает в точку смешения А воду, повышая ее давление до давления высокотемпературной воды. Таким образом, в точку смешения поступают два потока воды в результате действия двух различных насосов — сетевого и местного, включенных параллельно. Насос на перемычке действует в благоприятных температурных условиях (при температуре to<70 °С) и перемещает меньшее количество воды, чем насос на обратной или подающей магистрали (Go<Gc),

Gн=Go, где Go=Gс-G1 (6.10)

 

Насос на перемычке, обеспечивая смешение, не влияет на величину циркуляционного давления для местной системы отопления, которая определяется разностью давления в наружных теплопроводах. Изменение циркуляционного давления в системе и в перемычке Б—А между магистралями в этом случае схематично изображено на рис. 6.11, а. Показано постепенное (условно равномерное) понижение давления в направлении движения воды в подающей (наклонная линия Г1) и обратной (наклонная линия Т2) магистралях, падение давления в стояке (вер­тикальная сплошная линия) и возрастание под действием насоса в перемычке (пунктирная линия) до давления в точке А.

Смесительный насос включают непосредственно в ма­гистрали системы отопления, когда разность давления в наружных теплопроводах недостаточна для нормальной циркуляции воды в системе. Насос при этом, обеспечивая помимо смешения необходимую циркуляцию воды, стано­витсяциркуляционно-смесительным.

Насос на обратной или подающей магистрали (см. рис. 6.10, б, в) перемещает всю воду, циркулирующую в системе [Gн=Gс по выражению (6.3)], при температуре to или tг. Включение насоса в общую магистраль системы отопления позволяет увеличить циркуляционное давление в ней до необходимой величины независимо от разности давления в наружных теплопроводах. Условия смешения воды аналогичны: в точку А (см. рис. 6.10) поступают два потока воды (G1 и Go) также в результате действия двух насосов — сетевого и местного — с той лишь разницей, чтонасосы включаются последовательно (по направлению движения воды).

Рис. 6.12 Принципиальная схема во­доструйного элеватора

1 — сопло; 2 — камера всасывания; 3 — смесительный конус; 4 — горловина; 5 — диффузор

Изменение циркуляционного давления при действии системы отопления с циркуляционно-смесительным насосом, включенным в общую обратную магистраль, показано на рис. 6.11, б. Как видно, давление в системе ниже давления в наружных теплопроводах. Данная схема может быть выбрана после проверки, не вызовет ли понижение давления вскипания воды или подсоса воздуха в отдельных местах системы. Насос повышает давление воды до давления в наружном обратном теплопроводе. Давление в точке смешения А должно быть ниже давления в точке Б (устанавливается с помощью регулятора температуры — см. рис. 6.10).

Насос, включаемый в общую подающую магистраль, предназначают не только для смешения и циркуляции, но и для подъема воды в верхнюю часть системы отопления высокого здания. Смесительный насос становится также циркуляционно-повысительным. Изменение гидравлического давления в этом случае изображено на рис. 6.11, в,

Смесительных насосов, как и циркуляционных, устанавливают два с параллельным включением в теплопровод (см. рис. 6.9); действует всегда один из насосов при другом резервном.

Смешение воды может осуществляться и без местного насоса. В этом случае смесительная установка оборудуется водоструйным элеватором.

Водоструйный элеватор получил распространение как дешевый, простой и надежный в эксплуатации аппарат. Он сконструирован так, что подсасывает охлажденную воду для смешения с высокотемпературной водой и передает часть давления, создаваемого сетевым насосом на тепловой станции, в систему отопления для обеспечения циркуляции воды,

Водоструйный элеватор (рис. 6.12) состоит из конусообразного сопла, через которое со значительной скоростью протекает высокотемпературная вода при температуре t1в количествеG1; камеры всасывания, куда поступает охлажденная вода при температуре tо в количестве Go; смесительного конуса и горловины, где происходят смешение и выравнивание скорости движения воды, и диффузора.

Вокруг струи воды, вытекающей из отверстия сопла с высокой скоростью, создается зона пониженного давления, благодаря чему охлажденная вода перемещается из обратной магистрали системы (см. рис. 6.13) в камеру вса­сывания. В горловине струя смешанной воды двигается с меньшей, чем в отверстии сопла, но еще со значительной скоростью. В диффузоре при постепенном увеличении площади поперечного сечения по его длине гидродинамическое (скоростное) давление падает, а гидростатическое — нарастает. За счет разности гидростатического давления в конце диффузора и в камере всасывания элеватора создается циркуляционное давление, необходимое для циркуляции воды в системе отопления.

Одним из недостатков водоструйного элеватора является низкий КПД. Достигая наивысшего значения (43%) при малом коэффициенте смешения и особой форме камеры всасывания (исследования проф. П. Н. Каменева), гидростатический КПД стандартного элеватора практически при высокотемпературной воде близок к 10%. Следовательно, в этом случае разность давления в наружных теплопроводах на вводе их в здание должна не менее чем в 10 раз превышать циркуляционное давление ∆Рн, необходимое для циркуляции в системе отопления. Это условие значительно ограничивает давление, передаваемое водоструйным элеватором в систему из наружной тепловой сети, и вынуждает пользоваться формулой (6.8).

Другой недостаток элеватора — прекращение циркуляции воды в системе отопления при аварии в наружной тепловой сети, что ускоряет охлаждение отапливаемых помещений и замерзание воды в системе.


Еще один недостаток элеватора — постоянство коэффициента смешения, исключающее местное качественное регулирование (изменение температуры tг) системы отопления. Понятно, что при постоянном соотношении в элеваторе между Go и G1 температура tг, с которой вода поступает в местную систему отопления, определяется уровнем температуры t1, поддерживаемым на тепловой станции для всей системы теплоснабжения, и может не соответствовать теплопотребности конкретного здания. Для устранения этого недостатка применяют автоматическое регулирование площади отверстия сопла элеватора. Схема водоструйного элеватора «с регулируемым соплом» дана на рис. 6.13 Такие элеваторы, применяемые в настоящее время, позволяют в определенных пределах изменять коэффициент сме­шения для получения воды с температурой tг, необходимой для местной системы отопления, т. е. осуществлять требуемое качественно-количественное регулирование.