54. Достаточное условие экстремума, использующее высшие производные.
Пусть -- стационарная точка функции , и в этой точке существует вторая производная , причём . Тогда при точка есть точка локального максимума, а при -- локального минимума.
Доказательство. Поскольку , то по определению производной
Пусть . Тогда из существования предела следует, что для любого из некоторой достаточно малой проколотой окрестности точки выполняется то же неравенство для допредельного выражения, то есть
при . Поскольку, по предположению теоремы, -- стационарная точка, то , откуда , то есть имеет знак, противоположный знаку : при и при . Остаётся лишь применить теперь предыдущую теорему, из которой следует, что -- точка локального максимума.
Доказательство для случая совершенно аналогично.
| 55,56. Условия выпуклости и точки перегиба графика функции.
Точка перегиба функции внутренняя точка x0 области определения f, такая что f непрерывна в этой точке, существует конечная или определенного знака бесконечная производная в этой точке, и x0 является одновременно концом интервала строгой выпуклости вверх и началом интервала строгой выпуклости вниз, или наоборот.
Необходимое условие существования точки перегиба: если функция f(x), дважды дифференцируемая в некоторой окрестности точки x0, имеет в x0 точку перегиба, то .
Первое достаточное условие существования точки перегиба: если функция f(x) в некоторой окрестности точки x k раз непрерывно дифференцируема, причем k нечётно и , и при , а , то функция f(x) имеет в x0 точку перегиба.
Второе достаточное условие существования точки перегиба: Если в некоторой точке вторая производная функции равна нулю, а третья не равна нулю, то эта точка является точкой перегиба.
56. Вертикальные и наклонные асимптоты.
Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.
Прямая x = a называется вертикальной асимптотой графика функции f (x) при x → a, если выполнено хотя бы одно из условий
,
| Прямая y = b называется горизонтальной асимптотой графика функции f (x) при x → +∞, если 
Прямая y = kx + b, k ≠ 0 называется наклонной асимптотой графика функции f (x) при x → +∞, если Аналогично определяются горизонтальная и наклонная асимптоты при x → –∞.
Для того, чтобы прямая y = kx + b была асимптотой графика функции y = f (x) при x → +∞, необходимо и достаточно, чтобы существовали конечные пределы
|