Определим силы, действующие в зацеплении редуктора.

Рисунок 3 – Схема нагружения валов соосного редуктора и силы, действующие в косозубых цилиндрических зацеплениях.
Быстроходная пара

Тихоходная пара

Рассчитываем ведущий вал. Строим расчетную схему сил действующих на вал 1 в вертикальной и горизонтальной плоскости и эпюру крутящих моментов.

Рисунок 4 – Расчетная схема сил действующих на вал в вертикальной и горизонтальной плоскости, эпюра крутящих моментов и изгибающих моментов в вертикальной плоскости
Построение эпюры изгибающих моментов в вертикальной плоскости (рисунок 4):
Определяем опорные реакции от силы
:

Проверка: 
Наибольший момент будет в месте приложения нагрузки
:

Строим эпюру (рисунок 4).
Построение эпюры изгибающих моментов в горизонтальной плоскости (рисунок 5):
|
а) определяем опорные реакции от сил
и
:

Проверка:

Тогда:

а) определяем опорные реакции от силы
:

Строим эпюры (рисунок 5):

Рисунок 5 – Эпюры изгибающих моментов в горизонтальной плоскости
Учитывая изгибающие моменты в вертикальной и горизонтальной плоскостях, находим расчетный изгибающий момент в опасном сечении:

Для подбора подшипников качения определяем опорные реакции. Находим суммарные реакции в горизонтальной и вертикальной плоскости в опорах А и В:

Общие реакции:
Опора А: 
Опора В: 
Кроме того, на участке между подшипником и шестерней действует продольная сжимающая сила
. Тогда на опоре А возникает осевая реакция (рисунок 6).

Рисунок 6 – Схема действия продольной
сжимающей силы, эпюра продольных сил.
Рассчитываем промежуточный вал. Строим расчетную схему сил действующих на вал 2 в вертикальной и горизонтальной плоскости и эпюру крутящих моментов.

Рисунок 7 – Расчетная схема сил действующих на вал в вертикальной и горизонтальной плоскости, эпюра крутящих моментов и изгибающих моментов в вертикальной плоскости
Построение эпюры изгибающих моментов в вертикальной плоскости (рисунок 7):
Определяем опорные реакции от силы
и
:


Строим эпюру (рисунок 7).
Построение эпюры изгибающих моментов в горизонтальной плоскости (рисунок 8):
|
а) определяем опорные реакции от сил
и
:

Тогда:

б) определяем опорные реакции от сил
и
:

Тогда:

Строим эпюру (рисунок 8)

Рисунок 8 - Эпюры изгибающих моментов в горизонтальной плоскости
Учитывая изгибающие моменты в вертикальной и горизонтальной плоскостях, находим расчетный изгибающий момент в опасном сечении:

Для подбора подшипников качения определяем опорные реакции. Находим суммарные реакции в горизонтальной и вертикальной плоскости в опорах А и В:

Общие реакции:
Опора C: 
Опора D: 
Кроме того, на участке между подшипником и шестерней действует продольные сжимающие силы. Тогда на опоре D возникает осевая реакция (рисунок 9).
|

Рисунок 9 – Схема действия продольной
сжимающей силы, эпюра продольных сил
Рассчитываем ведомый вал. Строим расчетную схему сил действующих на вал 3 в вертикальной и горизонтальной плоскости и эпюру крутящих моментов.

Рисунок 10 – Расчетная схема сил действующих на вал в вертикальной и горизонтальной плоскости, эпюра крутящих моментов и изгибающих моментов в вертикальной плоскости
Построение эпюры изгибающих моментов в вертикальной плоскости (рисунок 10):
Определяем опорные реакции от силы
:


Строим эпюру (рисунок 10).
Построение эпюры изгибающих моментов в горизонтальной плоскости (рисунок 11):
|
а) определяем опорные реакции от сил
:

Тогда:

б) определяем опорные реакции от силы
:

Строим эпюры (рисунок 11):

Рисунок 11 - Эпюры изгибающих моментов в горизонтальной плоскости
|
Учитывая изгибающие моменты в вертикальной и горизонтальной плоскостях, находим расчетный изгибающий момент в опасном сечении:

Для подбора подшипников качения определяем опорные реакции. Находим суммарные реакции в горизонтальной и вертикальной плоскости в опорах H и G:

Общие реакции:
Опора G: 
Опора H: 
Кроме того, на участке между подшипником и шестерней действует продольные сжимающие силы. Тогда на опоре H возникает осевая реакция (рисунок 12).

Рисунок 12 – Схема действия продольной
сжимающей силы, эпюра продольных сил
Определение запаса прочности валов. Определяем коэффициенты прочности S в опасных сечениях валов:

где
- коэффициент запаса по нормальным напряжениям;
- коэффициент запаса по контактным напряжениям.
Определяем предел выносливости для всех валов:

Определяем максимальные напряжения в опасных сечениях валов:
;

Напряжения кручения:


Определяем коэффициенты для всех валов:
- эффективные коэффициенты концентрации напряжений при изгибе и кручении;
- масштабный фактор: для вала 1
; для вала 2
; для вала 3
;
- фактор шероховатости, для всех валов
;
и
- коэффициенты, корректирующие влияние постоянной составляющей цикла напряжений на сопротивление усталости, зависят от механических характеристик материала:
- для углеродистых мягких сталей;
.
Для вала 1:
(условие не удовлетворяется).
Для вала 2:
(условие не удовлетворяется).
Для вала 3:
(условие не удовлетворяется).
Из-за большого запаса усталостной прочности у валов конструктивно уменьшим их диаметры:

Тогда:

Для вала 1:
(условие удовлетворяется).
Для вала 2:
(условие удовлетворяется).
Для вала 3:
(условие удовлетворяется).