Приклад 2.20

.

 

Приклад 2.21. Довести, що при н. м. і будуть еквівалентними.

Розв’язання. Знайдемо границю відношення цих функцій.

 

Отже, за означенням ці величини еквівалентні.

 

Запам’ятай добре! В тих випадках, коли потрібно розкрити невизначеність типу , її зводять шляхом елементарних перетворень до невизначеностей типу або , які розкривають, використовуючи таблицю еквівалентностей.

 

Приклад 2.22. .

Розв’язання. Перейдемо до іншої невизначеності. Для цього використаємо властивості логарифмічної функції:

 

.

 

Приклад 2.23. .

Розв’язання. Перетворимо невизначеність в невизначеність (це завжди можна зробити), після чого приведемо границю до виду, коли можливе застосування еквівалентних перетворень.

.

 

Приклад 2.24. .

Розв’язання. Маємо невизначеність виду . Оскільки при многочлен в чисельнику перетворюється в нуль ( - корінь чисельника), то за теоремою Безу він розкладається на множники, один з яких . За теоремою Вієта другий корінь . Тому . Маємо

.

 

Приклад 2.25. .

Розв’язування. Перейдемо до іншої невизначеності. Для цього використаємо властивості логарифмічної функції:

 

.

Оскільки при , то невизначеності в останній границі немає і

 

.

 

7.Розкриття невизначеностей типу при з ірраціональними виразами під знаком границі.

Для розкриття таких невизначеностей потрібно домножити і поділити вираз, що стоїть під знаком границі, на спряжений до виразу, який містить ірраціональність. Виконавши необхідні перетворення обчислюємо дану границю.

 

 

Приклад 2.26. .

Розв’язання. Маємо невизначеність виду . Для її розкриття потрібно звільнитися від ірраціональності у чисельнику. З цією метою помножимо чисельник і знаменник дробу на вираз .

 

.

 

Оскільки при многочлен в знаменнику перетворюється в нуль, то за теоремою Безу знаменник ділиться на різницю без остачі. Виконаємо ділення на в стовпчик:

 

, тоді .

 

Отже,

.

 

 

Приклад 2.27.

Розв’язання. Маємо невизначеність виду . Для її розкриття потрібно звільнитися від ірраціональності у чисельнику та знаменнику. З цією метою помножимо чисельник і знаменник дробу на вираз . Маємо:

 

 

 

 

8.Розкриття невизначеності типу з використанням другої важливої границі

, (*)

тут довільна н. м. функція .

 

Приклад 2.28. .

Розв’язання. Спосіб І. Маємо невизначеність . Виконаємо тотожні перетворення, які приведуть границю до виду (*)

.

Вираз, що знаходиться в квадратних дужках, приведено до виду (*), де при , тому . Отже, матимемо:

 

.

Спосіб ІІ.

 

.

 

 

Приклад 2.29. .

Розв’язання. Спосіб І. Маємо невизначеність . Виконаємо тотожні перетворення, які приведуть границю до виду (*)

 

.

 

Вираз, що знаходиться в квадратних дужках, приведено до виду (*), де при , тому . Отже, матимемо:

 

.

 

Спосіб ІІ.

 

.