Погрешность взаимодействия

Эта составляющая общей погрешности результата возникает из-за конечных сопротивлений источника сигнала и прибора. На рис. 6 показан вольтметр, входное сопротивление RV кото­рого хоть и велико, но не бесконечно. При подключении вольт­метра к источнику ЭДС в цепи потечет ток I, определяемый значе­нием ЭДС Еx,а также значениями внутреннего сопротивления источника Rии входного сопротивления прибора RV. Поэтому из­меряемое вольтметром напряжение UV всегда будет несколько мень­ше значения ЭДС Еx,что и приводит к появлению погрешности взаимодействия Δвз.

Рис. 6. Погрешность взаимодействия источника напряжения

Погрешность взаимодействия Δвзвзаимодействия вольтметра и источника напряжения определяется и источника напряжения следующим образом:

U = Еx RV / (Rи+ RV ), Δвз= U – Еx = – Еx Rи/( Rи+ RV ),

 

Δвз – U Rи/ RV вз – Rи/ RV ´100.

При измерениях тока амперметрами так­же возникает погрешность взаимодействия (рис. 7).

 

Рис. 7. Влияние амперметра на ток в цепи Рис. 8. Погрешность взаимодействия прибора и источника напряжения

Амперметр имеет малое, но не нулевое внутреннее сопротив­ление RA,и при включении его в цепь ток в ней несколько умень­шается.

Если пренебречь малым значением внутреннего сопротивле­ния Rи, источника Е,считая, что оно гораздо меньше сопротивле­ния нагрузки Rн(Rи << Rн),то можно говорить о том, что ток в цепи с включенным амперметром определяется отношением зна­чения ЭДС Е ксумме сопротивлений нагрузки Rни амперметра RA. А действительное значение тока Iд в замкнутой цепи без ампер­метра определяется только сопротивлением нагрузки Rн:

I = E/(Rн + RA); Iд = E/ Rн.

Разница между значениями токов (I – Iд)и есть погрешность взаимодействия Δвз прибора и объекта исследования в данном случае. Абсолютное и относительное значения погрешности взаи­модействия равны соответственно:

Δвз = I – Iд – ERA/Rн2;

δвз– RA/Rн´100.

При работе с переменными напряжениями и токами эта со­ставляющая общей погрешности может быть заметно больше. Рас­смотрим, например, взаимодействие прибора и источника перио­дического напряжения. Поскольку входное сопротивление вольт­метра (или осциллографа) в общем случае есть комплексное со­противление Zвх,состоящее из активной части Rвхи емкостной Свх (рис. 8), то общее входное сопротивление есть параллельное со­единение активного и емкостного сопротивлений.

Погрешность взаимодействия прибора и источника периоди­ческого напряжения определяется следующим образом:

Δвз = UUД; Δвз– Rи U / Zвхвз– Rи / Zвх´100.

Погрешность взаимодействия в этом случае тем больше, чем меньше комплексное входное сопротивление Zвх, т.е. чем меньше активная составляющая Rвхи чем больше значение входной ем­кости Свх. С ростом частоты сигнала емкостная составляющая Zвх сильно уменьшается, что приводит к увеличению погрешности вза­имодействия.

Правда, на низких частотах сигналов (а в электрических цепях промышленной частоты они сравнительно низкие верхняя гра­ница спектра обычно не выше сотен герц единиц килогерц) емкостная составляющая Свх (обычно это десятки сотни пикофарад) практически не проявляется и можно говорить только об активной составляющей Rвх общего входного сопротивления Zвхприбора.

Динамическая погрешность

Динамическая погрешность – это погрешность СИ, возникаю­щая при измерении изменяющейся в процессе измерений физи­ческой величины.

Предположение о статической модели объекта (без имеющихся на то оснований) может привести к большим ошибкам. Инерцион­ность прибора при быстроменяющихся входных сигналах рождает динамическую погрешность результата измерения, а иногда и просто приводит к невозможности определить результат. Например: маг­нитоэлектрический амперметр не в состоянии зафиксировать крат­ковременный (длительностью менее 1 с) импульс тока.

На рис. 9 показано возникновение динамической погреш­ности Δд при протекании через магнитоэлектрический измери­тельный механизм быстро меняющегося тока. На рис. 9 изобра­жены кривая изменения тока i(t),текущего через механизм, и кри­вая изменения показаний α(t). Механическая инерционность под­вижной части прибора приводит к неизбежному отставанию ее реакции при быстрых изменениях тока. Возникающая при этом динамическая погрешность Δд тем больше, чем выше скорость изменения i(t)и чем больше мас­са подвижной части.

 

Рис.9. Динамическая погрешностьРис.10. Косвенное измерение мощности одним прибором

Меняющиеся, исследуемые сигналы могут приводить к зна­чительным погрешностям ре­зультатов косвенных измерений вследствие неодновременности выполнения различных исходных прямых измерений. Факти­чески это тоже динамическая по­грешность, но в данном случае она определяется не быстродействием отдельных приборов, а скоростью изменения исследуе­мых параметров и особенностя­ми организации эксперимента. Несинхронность получения от­дельных исходных результатов измерения как следствие выбран­ного метода (подхода) заставля­ет относить эту погрешность так­же и к методической, посколь­ку она не зависит от характери­стик (в частности, классов точ­ности) самих приборов.

Проиллюстрируем природу возникновения этой погрешности на примере косвенного измерения активной мощности в однофаз­ной электрической цепи одним прибором цифровым мультиметром с токовыми клещами. Поочередно (с некоторой естествен­ной временной задержкой Δt) измеряются текущие действующие значения напряжения U и тока I, а затем вычисляется значение активной мощности Р (рис. 10).

Предположим, что в момент времени t1 измерено действующее значение напряжения U(t1)= 220 В. Затем, скажем через 1 мин, в момент времени t2этим же прибором измерено действующее зна­чение тока I(t2) = 3,0 А. Далее, по результатам этих исходных пря­мых измерений вычисляется значение активной мощности (нагрузку считаем чисто активной):

Р = U(t1) I(t2) = 220 · 3,0 = 660 Вт.

Между тем, реальные значения активной мощности РРв моменты времени t1 и t2были равны, соответственно:

Р(t1) = U(t1) I(t2)= 220 · 3,3 = 726 Вт,

PP(t2) = U(t2) I(t2)= 240 · 3,0 = 720 Вт.

Таким образом, разница между вычисленным (660 Вт) и ре­альными (726 и 720 Вт) значениями активной мощности в дан­ном случае составляет около 10 %. Причем это без учета ин­струментальной погрешности прибора, погрешности взаимодей­ствия и др.

Если аналогичная методика используется для оценки мощно­сти в трехфазной электрической цепи, то ошибка может быть зна­чительнее за счет большего общего времени задержки Δ t.

Субъективная погрешность

Различают нормальное (штатное, объяснимое, предсказуемое) проявление субъективности отсчитывания при фиксации результа­та измерения (отсчета) и ненормальное (непредсказуемое). Появле­ние субъективной погрешности естественно и типично при работе с аналоговыми стрелочными приборами в виде погрешности отсчи­тывания. Погрешность отсчитывания в общем случае складывается из двух составляющих: погрешности интерполяции и погрешности параллакса.

Первая составляющая – погрешность интерполяции – неизбежно возникает при любой попытке определить положение указателя (стрелки) отсчетного устройства между двумя соседними делениями на шкале, т. е. оценить значение части де­ления. При статочном навыке оператора эта составляющая может иметь значение ± (0,2... 0,1) веса одного деления. У цифро­вых приборов есть похожая по природе составляющая погреш­ность квантования, но там она несубъективна.

Погрешность параллакса возникает при неперпендикулярном взгляде на шкалу в момент определения положения стрелки. Чем больше расстояние между шкалой прибора и стрел­кой,тем больше возможная погрешность параллакса ±Δ. Эта составляющая при тщательно выполняемом эксперименте также может быть сведена до значения ±(0,2...0,1) веса одного деле­ния. В конструкции сравнительно точных стрелочных приборов (класс точности 0,5 и больше) для устранения погрешности па­раллакса в плоскости шкалы устанавливают зеркало. Такая зер­кальная шкала позволяет обеспечить строго перпендикулярный взгляд на шкалу. Отсчитывание при этом необходимо производить таким образом, чтобы стрелка закрывала свое отражение в зеркале.

У циф­ровых приборов погрешности отсчитывания принципиально нет.

К субъективным же относятся и непредсказуемые заранее по­грешности, вызванные грубыми ошибками (промахами), как след­ствие низкой квалификации оператора и/или его плохого само­чувствия. Типичным примером такой субъективной погрешности является ошибка в отсчете и/или записи результата при работе с многодиапазонными приборами, а также при работе с прибо­рами с нелинейными шкалами.



ROOT"]."/cgi-bin/footer.php"; ?>