Симметричная форма записи системы

Запишем уравнения системы в нормальной (покоординатной) форме

 

................................

и запишем эти уравнения в симметричном виде

.

Или, заменяя переменные и правые части ,

получим симметричную форму записи системы

.

На переходе к симметричной форме записи основан метод интегрируемых комбинаций, которым иногда удается получить один или несколько первых интегралов и понизить тем самым порядок системы или решить ее.

Пример.

,

 

Автономные системы и свойства их решений.

Система называется автономной, если в ее правую часть не входит явно независимая переменная: .

Решение автономной системы можно рассматривать в пространстве координат , которое принято называть фазовым пространством.Проекция интегральной кривой на это пространство называется фазовой траекторией(или просто траекторией). Вообще говоря, любую систему можно сделать автономной, вводя дополнительную фазовую координату – независимую переменную и дополнительное уравнение . Фазовое пространство такой системы принято называть расширенным фазовым пространством.

 

Свойства решений автономных систем.

1) Если - решение системы, то и тоже решение.

.

Следствие. Фазовая траектория - это та же фазовая траектория, что и .

В самом деле, любая точка первой фазовой траектории является точкой второй фазовой траектории и наоборот.

 

2) Две фазовых траектории либо не имеют общих точек, либо совпадают.

Пусть две различных фазовых траектории имеют общую точку . Рассмотрим решение .

. Следовательно, по теореме Коши . Но - это траектория , сдвинутая на по аргументу. По следствию, обе фазовые траектории являются одной фазовой траекторией.

 

Следствие. Множество фазовых траекторий автономной системы в фазовом пространстве представляет собой совокупность непересекающихся кривых.

 

Точка называется точкой покоя (точкой равновесия) автономной системы, если .

 

3) Если точка - точка покоя, то - решение системы.

В самом деле, .

 

4) Любая фазовая траектория автономной системы есть траектория одного из трех типов:

1) гладкая, не самопересекающаяся кривая,

2) замкнутая гладкая кривая,

3) точка покоя.

 

Фазовый поток.

 

Рассмотрим решение задачи Коши автономной системы . Определим фазовый поток как оператор сдвига (по аргументу ) по фазовым траекториям системы = .

Рассмотрим некоторую область фазового пространства (фазовым) объемом . Фазовый поток переводит эту область в область объемом .

Справедлива теорема Лиувилля .

Здесь мерой в фазовом пространстве может служить фазовый объем , (дивергенция векторного поля правых частей системы или след матрицы Якоби). Левая часть этой формулы представляет собой изменение фазового объема в единицу «времени» – аргумента, т.е. известный из теории поля поток векторного поля правых частей системы – фазовых скоростей. Приведенная формула аналогична формуле Остроградского – Гаусса в теории поля.

Если , то .

Если , то , что дает формулу для определения фазового объема , что совпадает с формулой Остроградского – Лиувилля определителя Вронского для линейных автономных систем. Поэтому определитель Вронского имеет смысл фазового объема (определитель всегда имеет смысл некоторого объема, вспомним хотя бы смысл смешанного произведения векторов).