Устойчивость по первому приближению

Будем рассматривать автономную систему

и ее «систему первого приближения»

Заметим, что систему первого приближения можно строить, линеаризуя в окрестности нуля элементы матрицы, заменяя бесконечно малые элементы матрицы эквивалентными.

 

Теорема Ляпунова об устойчивости по первому приближению.

 

Пусть 1) непрерывны и непрерывно дифференцируемы по ,

2) .

Если все собственные числа матрицы A системы первого приближения имеют отрицательные действительные части, то тривиальное решение устойчиво.

Если хотя бы одно собственное число имеет положительную действительную часть , то тривиальное решение неустойчиво.

 

Пример.

Система первого приближения

Тривиальное решение неустойчиво.

Пример.

Система первого приближения

Тривиальное решение устойчиво.

Поскольку для автономных систем анализ устойчивости тривиального решения сводится к исследованию характера точки покоя, то зная поведение решений в окрестности различных точек покоя, мы выясним тем самым поведение траекторий систем.

 

Классификация точек покоя для автономных систем второго и третьего порядков.

Система второго порядка.

Запишем уравнение автономной системы второго порядка

Точка покоя .

 

1.Корни характеристического уравнения действительны..

 

а) .

При . Поэтому точка покоя (или тривиальное решение) асимптотически устойчива.

Заметим, что первое слагаемое – это проекция траектории на ось , второе слагаемое – проекция на ось .

Такая точка покоя называется

устойчивый узел.

 

 

б) .

Этот случай можно рассматривать как предыдущий, если формально положить t < 0. Получим те же траектории, что и в п. а), но стрелки на них будут направлены в другую сторону. Направление движение другое (t<0). Такая точка называется неустойчивый узел.

 

в) .

По вектору мы, находясь на траектории, стремимся к нулю, по вектору , наоборот, удаляемся от нуля.

 

Такая точка покоя - седло.

г) .

Это – тоже седло, но стрелки

направлены в другую сторону.

 

Траектория прижимается к той оси, для которой модуль характеристического числа меньше.

Седла – неустойчивые точки покоя.

Заметим, в ситуациях узлов и седла траектория, начавшись в определенном квадранте, в нем и остается.

д) .

Точка покоя – дикритический узел,

Устойчивый при , неустойчивый при

 

е)

Точка покоя - вырожденный узел,при устойчивая, но не асимптотически устойчивая. Если , то точка покоя - неустойчивая (стрелки направлены в обратную сторону)

ж) . Точка безразличного равновесия. При изменении времени любая точка остается на месте. Этими точками заполнена вся плоскость.

 

 

2. Корни характеристического уравнения комплексно сопряженные.

Параметр t имеет смысл угла поворота вокруг начала координат (в периодической составляющей).

а) Если , то траектория приближается к началу координат с ростом t (спираль), так как - убывающая функция. Точка покоя устойчивый фокусасимптотически устойчива

б) если , то траектория удаляется от начала координат с ростом t (спираль), так как - возрастающая функция. Точка покоя неустойчивый фокус неустойчива

в) если , то траектории представляют собой эллипсы, охватывающие начало координат. Точка покоя центрустойчива, но не асимптотически устойчива.

а) б) в)

 

 

Пример. , ,

Классифицировать точки покоя в зависимости от параметра.

 

,

а) седло,

б) неустойчивый узел

в) вырожденный узел

 

- комплексно сопряженные.

Так как , то точка покоя – неустойчивый фокус

3) , точка покоя – неустойчивый дикритический узел.

 

 

Система третьего порядка.

Запишем уравнение автономной системы третьего порядка

.

 

Все корни характеристического уравнения действительны и различны.

 

.

Картину поведения фазовых траекторий довольно легко представить, рассматривая поведение фазовых траекторий в плоскостях, натянутых на пары собственных векторов. Этот случай уже изучен выше.

а)

В плоскостях , , , имеем устойчивые узлы. Такая точка покоя так и называется – устойчивый узел.

б) В плоскостях , , , имеем неустойчивые узлы. Такая точка покоя называется – неустойчивый узел.

а) б)

 

в) один корень имеет знак, противоположный остальным двум корням. Точка покоя в этом случае называется седло – узели является неустойчивой точкой покоя.

Пусть, например, . Тогда в плоскости имеем неустойчивый узел, а в плоскостях , - седла. Если , то в плоскости имеем устойчивый узел, а в плоскостях , - седла.

 

.

 

Заметим, что в ситуациях узлов и седла – узел траектория, начавшись в определенном октанте, не переходит в другой октант.

 

2) - действительный корень характеристического уравнения, - комплексно сопряженная пара корней.

Заметим, что при изменении номера корней ситуация будет аналогичной.

В плоскости имеем фокус, устойчивый при , неустойчивый при .

а) . Такая точка покоя называется устойчивый фокус.

б) . Такая точка покоя называется неустойчивый фокус.

 

в) или . Такая особая точка называется седло – фокус и является неустойчивой.

В первом случае по оси точка по траектории приближается к плоскости и уходит от начала координат, так как на самой плоскости имеем неустойчивый фокус.

Во втором случае на плоскости имеем устойчивый фокус, поэтому траектория стремится к оси , но удаляется от начала координат по этой оси, так как .