Функция Ляпунова, «вторая метода Ляпунова»

 

Рассмотрим автономную систему и

функцию .

Назовем эту функцию знакоположительной, если ,

знакоотрицательной, если

Назовем функцию положительно определенной, если

она знакоположительна,

Назовем функцию отрицательно определенной, если

она знакоотрицательна,

Назовем функцию знакоопределенной, если она является отрицательно определенной или положительно определенной.

 

Введем производную функции в силу системы : . Заметим, что . Поэтому, если , то угол между градиентом V и вектором правых частей системы тупой. Следовательно, убывание функции V соответствует движению по фазовым траекториям внутрь линии уровня =С.

На этом основан метод функций Ляпунова. Этот метод сводится к трем теоремам Ляпунова.

Теорема Ляпунова об устойчивости.Пусть существует функция (функция Ляпунова), положительно определенная и имеющая знакоотрицательную в некоторой окрестности точки .

Тогда тривиальное решение автономной системы устойчиво по Ляпунову.

Теорема Ляпунова об асимптотической устойчивости.Пусть существует функция , положительно определенная и имеющая отрицательно определенную в некоторой окрестности точки .

Тогда тривиальное решение автономной системы асимптотически устойчиво по Ляпунову.

Теорема Ляпунова о неустойчивости.Пусть . Пусть знакоопределена в некоторой окрестности точки . Если в любой окрестности точки найдутся такие точки, в которых знаки и совпадают, то тривиальное решение автономной системы неустойчиво.

Пример.

 

Выберем

положительно определена, отрицательно определена. Поэтому тривиальное решение асимптотически устойчиво.

 

Пример.

Выберем

и положительно определены, поэтому тривиальное решение неустойчиво.

 

 

Лекция 25. Приближенное вычисление интеграла.

 

Часто нужно вычислить интеграл , а аналитически это сделать невозможно (интеграл не берется) или слишком громоздко. Тогда применяют приближенные методы вычисления интеграла на отрезке, по которым пишут алгоритмы и программы реализации этих методов на ЭВМ. Численный расчет дает значение интеграла с некоторой погрешностью, которая зависит как от погрешности метода, так и от погрешности вычислений. Чаще всего рассматривают равномерную сетку, разбивая отрезок на отрезки длины шагом h: .

Формулы прямоугольников.

Обозначим . Заменим интеграл интегральной суммой, вычисляя площадь под графиком функции как сумму площадей прямоугольников с основанием h, высотами .

Если на первом отрезке высоту прямоугольника можно выбрать как , тогда на последнем отрезке высота прямоугольника . Получим первую формулу прямоугольников

.

Если на первом отрезке высоту прямоугольника можно выбрать как , тогда на последнем отрезке высота прямоугольника . Получим вторую формулу прямоугольников

.

Оценим погрешность формул прямоугольников. Разложим в ряд Тейлора и оценим остаточный член.

Для первой формулы прямоугольников

где .

Для второй формулы прямоугольников

где .

Таким образом, обе формулы прямоугольников дают погрешность порядка h и являются формулами первого порядка точности.

Можно повысить точность формулы прямоугольников за счет вычисления функции в серединах отрезков разбиения. Получаем третью формулу прямоугольников

.

Оценим погрешность этой формулы.

+

+0+

Таким образом, погрешность третьей формулы прямоугольников не превышает , где . Эта формула прямоугольников имеет второй порядок точности.

 

Формула трапеций.

 

Сложим первую и вторую формулы прямоугольников и разделим пополам. Получим формулу трапеций

Поясним название формулы. Приблизим площадь под графиком функции на отрезке площадью трапеции . Суммируя площади по всему отрезку интегрирования, получим

Аппроксимируем функцию кусочно – линейной функцией, значения которой совпадают с значениями функции в точках разбиения. Площадь под графиком кусочно – линейной функции на отрезке составит

. Суммируя площади по всему отрезку интегрирования, получим вновь формулу трапеций.

Можно показать, что формула трапеций – формула второго порядка точности. Погрешность вычисления интеграла с помощью этой формулы (это можно показать) не превышает , т.е. в два раза больше, чем по третьей формуле прямоугольников.

 

 

Формула Симпсона.

Аппроксимируем функцию на отрезке разбиения квадратичной функцией так, чтобы

 

Лемма. .

Докажем лемму для . Сделаем замену .

Тогда формула сведется к следующей:

.

Левая часть

Правая часть . Лемма доказана.

Разобьем теперь отрезок интегрирования на 2n частей, ( ). Применим лемму к отрезкам , ,..., получим формулу Симпсона

.

Можно показать, что формула Симпсона – формула четвертого порядка точности, ее погрешность не превосходит , где . Это означает, что при интегрировании многочлена третьей степени формула Симпсона точна, ее погрешность равна нулю.

Пример. Вычислить приближенно I = с шагом .

1 формула прямоугольников ,

2 формула прямоугольников ,

3 формула прямоугольников ,

Формула трапеций .

Формула Симпсона