Нормальний закон розподілу

Серед розподілів неперервних випадкових величин центральне місце займає нормальний (закон Гаусса). Він часто застосовується в задачах практики, проявляється в тих випадках, коли випадкова величина Х є результатом дії великого числа факторів, кожний з яких окремо на величину Х впливає мало і не можна виділити, який більше, а який менше.

Основна особливість, що виділяє нормальний закон серед інших, полягає в тому, що він є граничним законом, до якого наближаються інші закони розподілу.

Означення. Нормальним називається розподіл ймовірностей неперервної випадкової величини, якщо її густина розподілу має вигляд:

(12)

для довільного значення і довільних чисел і .

Числа і називають параметрами розподілу і мають певний ймовірнісний зміст, який розглянемо нижче.

Графіком функції (12) є крива, яку в літературі називають кривою Гаусса, або нормальною кривою.

 

 
 

 

 


Якщо у формулі (12) покласти , отримуємо нормовану функцію Гаусса, яка нам уже траплялася в теоремах Муавра-Лапласа (див. лк.23, §3) під назвою функції Лапласа.

Бачимо, що нормальний розподіл визначається двома параметрами: і . Досить знати ці параметри, щоб задати нормальний закон розподілу. Доведемо, що ймовірнісний зміст цих параметрів наступний: - математичне сподівання, а - середнє квадратичне відхилення. Дійсно:

а)

Перший доданок , бо функція непарна, а інтегрування ведеться в межах, симетричних відносно початку координат; другий доданок - інтеграл Пуассона, отже:

. (13)

б)

. (14)

Відмітимо деякі властивості нормальної кривої:

а) крива симетрична відносно прямої і ;

б) крива має один максимум при , бо при , при і , при ;

в) крива асимптотично наближається до осі , бо ;

г) зміна математичного сподівання при призводить до зміщення кривої Гаусса вздовж осі .

При зміні середнього квадратичного відхилення і крива розподілу міняє свій вигляд (див рис.1), де крива І відповідає , крива ІІ - , а для кривої ІІІ - , .

 

Поряд з диференціальною функцією розподілу (12) нормального закону розподілу розглянемо й інтегральну функцію. Згідно з означенням, маємо:

.

Перший інтеграл відомий в літературі як інтеграл Пуассона і його значення дорівнює 0,5. Тоді у другому робиться заміна :

. (15)

Як наслідок з формули (15) отримаємо ймовірність попадання випадкової величини, розподіленої за нормальним законом, в інтервал :

(16)

Легко встановити і відхилення випадкової величини від її математичного сподівання на наперед задану величину :

. (17)

З останньої формули (17) легко встановити правило трьох сигм, а саме, покладемо .

.

Якщо , тобто , то

(18)

В цьому полягає сутність правила трьох сигм: якщо випадкова величина розподілена нормально, то абсолютна величина її відхилення від математичного сподівання не перевищує потроєного середнього квадратичного відхилення.

Приклад 1. Похибка радіодальноміра має нормальний закон розподілу з м, м. Знайти ймовірність того, що виміряне значення дальності буде відхилятися від істинного не більше, ніж на 20 м.

Рішення. Скористаємось формулою (17):

.