Заштрихованы области аксиального р-орбиталей бензола
перекрывания гибридных sp2 –орбиталей
Такие же гибридные sp2-орбитали образуют σ-связи с атомами водорода, которые используют для связи сферически симметричные орбитали 1s. Этот низколежащий по уровню энергии каркас обычно не затрагивается в реакциях ароматических соединений и служит лишь проводником электронных эффектов заместителей, например, индукционного эффекта (см. ниже). На более высоких уровнях энергии располагается сопряженная π-электронная система, образованная чистыми р-орбиталями с боковым (латеральным) перекрыванием (рис.2).
Оси этих орбиталей перпендикулярны плоскости цикла и образуют замкнутое (кольцевое) электронное облако, подобное ореолу (нимбу) над и под плоскостью остова молекулы. Образующийся при этом секстет
π-электронов обуславливает особые свойства и стабильность бензола
(рис.2а). Поскольку энергия π-связей С-С (обычно
250 кДж/моль) существенно меньше, чем σ-связей
(~350 кДж/моль), именно эти связи обычно затраги-
Рисунок 2а ваются в реакциях ароматических соединений.
Электронное строение ароматических соединений и их реакционная способность адекватно описываются в рамках теории молекулярных орбиталей (МО), которую в простейшем приближении (метод молекулярных орбиталей Хюккеля, МОХ) можно представить следующим образом: электрон помещается в многоцентровое поле положительного заряда всех ядер данной молекулы и рассматриваются различные квантовые энергетические уровни для такой системы, которую по аналогии с атомными орбиталями (АО) называют молекулярными орбиталями (МО). Каждая МО способна принять до 2 электронов (с антипараллельными спинами).
Сначала заполняются более низкие по энергии МО, а затем – более высокие. В конкретных приложениях теории МО эти орбитали (или соответствующие волновые функции) рассматриваются в качестве линейных комбинаций атомных орбиталей (метод МО-ЛКАО).
В образовании одной МО могут участвовать несколько АО. Существуют одноцентровые, двухцентровые и т.д. МО. МО подразделяются на связыва-
ющие, несвязывающие и разрыхляющие. Помещение электронов (одного или двух) на связывающую МО приводит к энергетической стабилизации системы, на несвязывающую – к неизменности энергетического состояния, а на разрыхляющую - к энергетической дестабилизации системы, если за нулевой уровень принять энергию совокупности изолированных АО.
Одноцентровая МО называется несвязывающей. Двухцентровые МО соответствуют перекрыванию двух соседних АО, что приводит к появлению двух новых МО, одна из которых расположена ниже уровня для изолированных атомов, а другая – выше. Первая МО называется связывающей, а вторая – разрыхляющей. Подводя к связывающей двуцентровой МО новую валентную АО (или МО), получают опять две новые многоцентровые МО и т.д. В частности, для бензола, согласно теории МО-ЛКАО, шесть атомных р-орбиталей атомов углерода комбинируются с образованием шести молекулярных π-орбиталей, из которых три являются связывающими, а три – разрыхляющими.
В методе МО-ЛКАО в простейшем случае двухэлектронной связи между одинаковыми атомами молекулярная волновая функция Ψ запишется как
Ψ= с1χ1 ± с2 χ2 ,
где χ1 и χ2 –атомные волновые функции (атомные орбитали), с1 и с2 –нормировочные коэффициенты (в данном случае из условий симметрии молекулы следует, что с1 = с2, и по условиям нормировки 2сi2 =1.
Квадрат коэффициента сi характеризует вероятность нахождения электрона в поле i-го атома, а суммарная вероятность нахождения двух электронов в поле двух ядер равна единице.
Отсюда с1 = с2 =
и две МО как симметричная и антисимметричная комбинации АО (ΨS и ΨА ) будут иметь вид:
Энергии этих состояний молекулы обозначаются, соответственно, как ЕS и ЕA.
Энергии МО включают т.н. матричные элементы Н11=Н22=α; Н12=Н21=β и S12=S21=S, величина которых зависит от межъядерного расстояния.
α носит название кулоновскогоинтеграла, т.к. в терминах квантовой механики он выражает классическое кулоновское взаимодействие частиц. Он включает энергию электрона в изолированном атоме (в простейшем случае – атоме водорода), кулоновское отталкивание ядер и энергию кулоновского взаимодействия второго ядра с электронным облаком, окружающем первое ядро. На расстояниях вблизи равновесных этот интеграл отрицателен и в нулевом приближении принимается равным энергии электрона в атоме.
β называется резонансным(или обменным) интегралом, который описывает то добавочное понижение энергии, которое возникает из-за возможности перехода электрона от ядра А к ядру В молекулы АВ, возможности движения в поле двух ядер, как бы «обменивая» при этом ядра, обменивая χ1 и χ2. Энергия, выражаемая интегралом β, не имеет аналога в классической физике. Его вклад определяет энергию химической связи А-В; чем он больше по абсолютной величине, тем прочнее связь. На равновесном межъядерном расстоянии энергия диссоциации связи приближенно равна – β.
S –интеграл перекрывания, он служит мерой перекрывания атомных орбиталей (АО), образующих МО. Он равен единице при RАВ =0 (где R –расстояние между ядрами) и спадает до нуля при увеличении R. На обычных межъядерных расстояниях в молекуле β тем больше по абсолютной величине, чем больше S. Поэтому принято считать, что чем больше перекрываются АО, образующие МО, тем прочнее связь. Приближенное решение уравнения Шредингера для двухатомной молекулы дает следующие величины энергии двух МО: ES=(α +β)/(1+s) и EА=(α -β)/(1-s).
В нулевом приближении величиной S можно пренебречь по сравнению с единицей, и тогда энергия ковалентной связи (в которой оба ядра владеют электронами в равной мере) будет включать вклады только кулоновского и резонансного интегралов: ES = α +β и EА= α –β.
В соответствии с уравнениями квантовой механики и вышеприведенным изложением атомные волновые функции (выражаемые через радиусы атомных орбит Бора и расстояния электронов от обоих ядер) должны иметь одинаковый знак в области перекрывания, т.е. для π-связи этилена это можно выразить следующим образом:
Рисунок 3. π-МО молекулы этилена
Если соединить пунктирной линией доли АО с одинаковым знаком, функция ΨА обращается в нуль посредине σ-связи С-С молекулы этилена, т.е. π-связь отсутствует. Эта точка называется узловой. Нижняя связывающая МО, как правило, не имеет узловых точек (т.е. является полносвязывающей МО).
При изучении молекул, содержащих более одной кратной связи, например диенов с двумя соседними связями С=С (I), было показано, что они более стабильны, чем соединения, в которых эти связи изолированы, например 1,4-пентадиен (II):
СН2=СН-СН=СН2 СН2=СН-СН2-СН=СН2