Момент силы. Уравнение динамики вращательного движения твердого тела

Моментом силы F относительно неподвиж­ной точкиО называется физическая вели­чина, определяемая векторным произведе­нием радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):

M = [rF].

Здесь М — псевдовектор, его направление совпадает с направлением поступательно­го движения правого винта при его враще­нии от г к F.

Модуль момента силы

M = Frsina= Fl, (18.1)

где a — угол между г и F; rsina =l — кратчайшее расстояние между линией дей­ствия силы и точкой О плечо силы.

Моментом силы относительно непод­вижной осиz называется скалярная вели­чина Мz, равная проекции на эту ось век­тор а М момента силы, определенного от­носительно произвольной точки О данной оси 2 (рис.26). Значение момента Мz не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представля ется в виде вектора, совпадающего с осью:

Мz = [rF]z.

Найдем выражение для работы при вращении тела (рис.27). Пусть сила F приложена в точке В, находящейся от оси вращения на расстоянии r, a — угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твер­дое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dj точка приложения В проходит путь ds= rdj, и работа равна произведению проекции силы на направление смещения на величину смещения:

dA=Fsinardj. (18.2) Учитывая (18.1), можем записать dA=Mzdj,

где Frsina = Fl =Mz — момент силы от­носительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол пово­рота.

Работа при вращении тела идет на увеличение его кинетической энергии:

dA = dT, но

Учитывая, что w=dj/dt, получим

Уравнение (18.3) представляет собой уравнение динамики вращательного дви­жения твердого телаотносительно непод­вижной оси.

Можно показать, что если ось враще­ния совпадает с главной осью инерции (см. §20), проходящей через центр масс, то имеет место векторное равенство

где J — главный момент инерции тела (момент инерции относительно главной оси).

 

Момент инерции

При изучении вращения твердого тела пользуются понятием момента инерции. Моментом инерциисистемы (тела) отно­сительно оси вращения называется физи­ческая величина, равная сумме произведе­ний масс n материальных точек системы на квадраты их расстояний до рассматри­ваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с коорди­натами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой Л и радиусом R относительно его геометрической оси (рис.23). Разобьем

 

 

цилиндр на отдельные полые концентриче­ские цилиндры бесконечно малой толщины dr с внутренним радиусом rи внешним — r+dr. Момент инерции каждого полого цилиндра dJ = r2dm (так как dr<<r, то считаем, что расстояние всех точек ци­линдра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r — плотность материала, то dm=r•2prhdr и dJ = 2prr3dr. Тогда мо­мент инерции сплошного цилиндра

но так как pR'2h — объем цилиндра, то его масса m = pR2hr, а момент инерции

J = 1/2R2.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относи­тельно любой другой параллельной оси определяется теоремой Штейнера:момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, про­ходящей через центр масс С тела, сло­женному с произведением массы mтела на квадрат расстояния а между осями: J = Jc + ma2. (16.1)

Таблица 1

 

В заключение приведем значения мо­ментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

14. Моментом импульса относительно не­подвижной осиz называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О дан­ной оси. Значение момента импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого те­ла вокруг неподвижной оси z каждая от­дельная точка тела движется по окружно­сти постоянного радиуса ri с некоторой

скоростью vi. скорость vi; и импульс mivi

перпендикулярны этому радиусу, т. е. ра­диус является плечом вектора mivi. Поэто­му можем записать, что момент импульса отдельной частицы

Liz = тiviri (19.1)

и направлен по оси в сторону, определяе­мую правилом правого винта.

Момент импульса твердого телаотно­сительно оси есть сумма моментов импуль­са отдельных частиц:

Используя формулу (17.1) vi = wri, получим

т. е.

Lz = Jzw. (19.2)

Таким образом, момент импульса твердого тела относительно оси равен произведе­нию момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем уравнение (19.2) по времени:

т. е.

dLz/dt= Mz

Это выражение — еще одна форма урав­нения (закона) динамики вращательного движения твердого телаотносительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место век­торное равенство

dL/dt= М. (19.3)

В замкнутой системе момент внешних сил М=0 и dL/dt=0, откуда

L = const. (19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса:мо­мент импульса замкнутой системы сохра­няется, т. е. не изменяется с течением времени.

Закон сохранения момента импуль­са — фундаментальный закон природы, Он связан со свойством симметрии про­странства — его изотропностью,