Определение
Поверхность, которая в некоторой декартовой системе координат задается уравнением
называется эллиптическим цилиндром,
поверхность, заданная уравнением
называется гиперболическим цилиндром,
поверхность, заданная уравнением
, называется параболическим цилиндром.
Для того чтобы построить поверхность, задаваемую приведёнными уравнениями, достаточно изобразить на плоскости
направляющую, уравнение которой на этой плоскости совпадает с уравнением самой поверхности, и затем через точки направляющей провести образующие параллельно оси
. Для наглядности следует построить также одно-два сечения плоскостями, параллельными плоскости
. В каждом таком сечении получим такую же кривую, как и исходная направляющая. Изображения этих цилиндров сечениями приведены на рисунках 27,.29 и 31, а их объемные изображения - на рисунках 28, 30 и 32.

Рис.14.27.Изображение эллиптического цилиндра с помощью сечений Рис.14.28.Эллиптический цилиндр

Рис.14.29.Изображение гиперболического цилиндра с помощью сечений Рис.14.30.Гиперболический цилиндр

Рис.14.31.Изображение параболического цилиндра с помощью сечений Рис.14.32.Параболический цилиндр