Случайные погрешности

4.5.1 Статистическая устойчивость распределения наблюдений

При наличии случайных погрешностей измерений прибегают к многократным наблюдениям и последующей статистической обработке их результатов. При этом результаты наблюдений и измерений и случайные погрешности рассматриваются как случайные величины, то есть величины, которые характеризуют случайное явление и в результате измерений принимают то или иное значение. Обработка результатов таких наблюдений возможна, если их рассеивание обнаруживает определенные статистическиезакономерности. Если же результаты наблюдений разбросаны произвольно, то использовать какие-либо способы обработки таких наблюдений и получить результат измерения не представляется возможным.

Поэтому при формулировании конкретной задачи измерений и при получении результатов наблюдений необходимо прежде всего проверить наличие закономерностей в распределении наблюдений. Если такие закономерности обнаруживаются, то распределение наблюдений обладает статистической устойчивостью и для их обработки возможно применение методов теории вероятностей и математической статистики. При этом необходимо отметить, что обнаружение статистических закономерностей в распределении результатов наблюдений проводится после исключения из них всех известных систематических погрешностей.

4.5.2 Дифференциальные и интегральные законы распределения случайной величины

Случайная величина наилучшим и исчерпывающим образом характеризуется в теории вероятностей законом ее распределения. Этот закон устанавливает связь между возможными значениями случайной величины и соответствующими этим значениям вероятностям их появления. Существует две формы описания закона распределения случайной величины - дифференциальная и интегральная. Причем, в метрологии в основном используется дифференциальная форма - закон распределения плотности вероятностей случайной величины.

Дифференциальный закон распределения характеризуется плотностью распределения вероятностей f(x) случайной величины х. Вероятность Рпопадания случайной величины в интервал от х1 до х2 при этом дается формулой:

Графически эта вероятность представляет собой отношение площади под кривой f(x) в интервале от х1 до х2 к общей площади, ограниченной всей кривой распределения. Как правило, площадь под всей кривой распределения вероятностей нормируют на единицу.

В данном случае представлено распределение непрерывной случайной величины. Кроме них существуют и дискретные случайные величины, принимающие ряд определенных значений, которые можно пронумеровать.

Интегральный закон распределения случайной величины представляет собой функцию F(x), определяемую формулой

Вероятность, что случайная величина будет меньше х1 дается значением функции F(х) при х = х1 :

Хотя закон распределения случайных величин является их полной вероятностной характеристикой, нахождение этого закона является довольно трудной задачей и требует проведения многочисленных измерений. Поэтому на практике для описания свойств случайной величины используют различные числовые характеристики распределений. К ним относятся моменты слу-чайных величин: начальные и центральные, которые представляют собой некоторые средние значения. При этом если усредняются величины, отсчитываемые от начала координат, то моменты называются начальными, а если от центра распределения – то центральными.

Начальный момент k-го порядка определяется формулой:

 

Наибольший практический интерес представляет начальный момент первого порядка - математическое ожидание случайной величины m1 (k=1):

 

Математическое ожидание определяет положение центра группирования случайной величины, вокруг которого наблюдается ее рассеяние. Экспериментальной оценкой математического ожидания при многократных измерениях является среднее арифметическое значение измеряемой величины.

Центральный момент k-го порядка определяется формулой:

 

Особую роль играет центральный момент второго порядка. Он называется дисперсией D случайной величины и характеризует рассеяние отдельных ее значений:

 

На практике чаще используется среднее квадратическое отклонение σ (СКО) случайной величины, определяемое формулой:

 

При более подробном изучении распределений случайной величины используются моменты более высоких порядков. Так, любой нечетный центральный момент характеризует асимметрию распределения. Например, третий момент используют для нахождения коэффициента асимметрии кривой распределения относительно математического ожидания. Четвертый центральный момент характеризует остроту вершины кривой распределения.

4.5.3 Характеристики оценки измеряемой величины

Задачей измерения является нахождение по полученным наблюдениям наилучшей оценки измеряемой величины - результата измерения и оценки точности этого результата, т.е. степени его близости к истинному значению величины - погрешности измерений. При этом считается, что закон распределения наблюдений и погрешностей известен. Под оценкой в данном случае понимается нахождение значений параметров этих распределений случайных величин по ограниченному числу наблюдений. Полученные оценки параметров распределений являются лишь приближениями к истинным значениям этих параметров и используются в качестве результата измерений и его погрешности. Для того чтобы оценку, получаемую по результатам многократных наблюдений, можно было использовать в качестве параметра функции распределения случайной величины, она должна отвечать ряду требований — быть состоятельной, несмещенной и эффективной.

Состоятельная оценка – это оценка, которая при увеличении числа наблюдений стремится к истинному значению оцениваемого параметра.

Несмещенная оценка - оценка, математическое ожидание которой равно истинному значению оцениваемого параметра.

Эффективная оценка – оценка, имеющая наименьшую дисперсию по сравнению с любой другой оценкой данного параметра.

Методы нахождения оценок параметров распределений, а по ним результатов измерений и их погрешностей зависят от вида функции распределения и от тех соглашений по обработке результатов измерений, которые нормируются в рамках законодательной метрологии в нормативной документации.

4.5.4 Примеры распределения случайных величин

Способы нахождения значений случайной величины зависят от вида функции ее распределения. Однако на практике такие функции, как правило, неизвестны. Если же случайный характер результатов наблюдений обусловлен погрешностями измерений, то полагают, что наблюдения имеют нормальное распределение. Это обусловлено тем, что погрешности измерений складываются из большого числа небольших возмущений, ни одно из которых не является преобладающим. Согласно же центральной предельной теореме сумма бесконечно большого числа взаимно независимых бесконечно малых случайных величин с любыми распределениями имеет нормальное распределение. Нормальное распределение для случайной величины х с математическим ожиданием и диспер-сией s имеет вид:

Реально даже воздействие ограниченного числа возмущений РїСЂРёРІРѕРґРёС‚ Рє нормальному распределению результатов измерений Рё РёС… погрешностей. Р’ настоящее время наиболее полно разработан математический аппарат именно для случайных величин, имеющих нормальное распределение. Если же предположение Рѕ нормальности распределения отвергается, то статистическая обработка наблюдений существенно усложняется Рё РІ таком случае невозможно рекомендовать общую методику статистической обработки наблюдений. Часто даже РЅРµ известно, какая характеристика распределения может служить оценкой истинного значения измеряемой величины.

Выше приведено аналитическое выражение нормального распределения для случайной измеряемой величины х. Переход к нормальному распределению случайных погрешностей осуществляется переносом центра распределений в и откладывания по оси абсцисс погрешности .

Нормальное распределение характеризуется двумя парамет-рами: математическим ожиданием m1 и средним квадратическим отклонением σ.

При многократных измерениях несмещенной, состоятельной и эффективной оценкой m1 для группы из n наблюдений является среднее арифметическое :

.

Нужно сказать, что среднее арифметическое дает оценку математического ожидания результата наблюдений и может быть оценкой истинного (действительного) значения измеряемой величины только после исключения систематических погрешностей.

Оценка S среднего квадратического отклонения (СКО) дается формулой:

Эта оценка характеризует рассеяние единичных результатов измерений в ряду равноточных измерений одной и той же величины около их среднего значения.

Другими оценками рассеяния результатов в ряду измерений являются размах (разница между наибольшим и наименьшим значением), модуль средней арифметической погрешности (арифметическая сумма погрешностей, деленная на число измерений) и доверительная граница погрешности (подробно рассматривается ниже).

СКО является наиболее удобной характеристикой погрешности в случае ее дальнейшего преобразования. Например, для нескольких некоррелированных слагаемых СКО суммы определяется по формуле:

.

Оценка S характеризует рассеяние единичных результатов наблюдений относительно среднего значения, то есть в случае, если мы за результат измерений примем отдельный исправленный результат наблюдений. Если же в качестве результата измерений принимается среднее арифметическое, то СКО этого среднего определяется по формуле:

 

Нормальное распределение погрешностей имеет следующие свойства:

  1. симметричность, т.е. погрешности, одинаковые по величине, но противоположные по знаку, встречаются одинаково часто;
  2. математическое ожидание случайной погрешности равно нулю;
  3. малые погрешности более вероятны, чем большие;
  4. чем меньше s, тем меньше рассеяние результатов наблюдений и больше вероятность малых погрешностей.

Другим распространенным в метрологии распределением случайной величины является равномерное распределение - распределение, при котором случайная величина принимает значения в пределах конечного интервала от х1 до х2 с постоянной плотностью вероятностей.

Дифференциальная функция равномерного распределения имеет вид:

f(x) = СЃ РїСЂРё С…1 ВЈ x ВЈ С…2

f(x) = 0 РїСЂРё С…2 < x < С…1

При нормировке площади кривой распределения на единицу, получаем, что с(х2 – х1) = 1 и с = 1/ (х2 – х1).

Равномерное распределение характеризуется математичес-РєРёРј ожиданием , дисперсией или РЎРљРћ .

Кроме рассмотренных примеров распределений случайных величин существуют и другие важные для практического использования распределения дискретных случайных величин, например, биномиальное распределение и распределение Пуассона. В настоящем курсе они не рассматриваются.

4.5.5 Доверительные интервалы

Приведенные выше оценки параметров распределения случайных величин в виде среднего арифметического для оценки математического ожидания и СКО для оценки дисперсии называются точечными оценками, так как они выражаются одним числом. Однако в некоторых случаях знание точечной оценки является недостаточным. Наиболее корректной и наглядной оценкой случайной погрешности измерений является оценка с помощью доверительных интервалов.

Симметричный интервал РІ границами В± О”С…(Р) называется доверительным интервалом случайной погрешности СЃ довери-тельной вероятностью Р, если площадь РєСЂРёРІРѕР№ распределения между абсциссами –Δх Рё +О”С… составляет Р-СЋ часть всей площади РїРѕРґ РєСЂРёРІРѕР№ плотности распределения вероятностей. РџСЂРё РЅРѕСЂРјРёСЂРѕРІРєРµ всей площади РЅР° единицу Рпредставляет часть этой площади РІ долях единицы (или РІ процентах). Другими словами, РІ интервале РѕС‚ -DС…(Р) РґРѕ +DС…(Р) СЃ заданной вероятностью Рвстречаются РГ—100% всех возможных значений случайной погрешности.

Доверительный интервал для нормального распределения находится по формуле:

 

РіРґРµ коэффициент t зависит РѕС‚ доверительной вероятности Р.

Для нормального распределения существуют следующие соотношения между доверительными интервалами Рё доверительной вероятностью: 1s (Р=0,68), 2s (Р= 0,95), 3s (Р= 0,997), 4s (Р=0,999).

Доверительные вероятности для выражения результатов измерений и погрешностей в различных областях науки и техники принимаются равными. Так, в технических измерениях принята доверительная вероятность 0,95. Лишь для особо точных и ответственных измерений принимают более высокие доверительные вероятности. В метрологии используют, как правило, доверитель-ные вероятности 0,97, в исключительных случаях 0,99. Необходимо отметить, что точность измерений должна соответствовать поставленной измерительной задаче. Излишняя точность ведет к неоправданному расходу средств. Недостаточная точность измерений может привести к принятию по его результатам ошибочных решений с самыми непредсказуемыми последствиями, вплоть до серьезных материальных потерь или катастроф.

При проведении многократных измерений величины х, подчиняющейся нормальному распределению, доверительный интервал может быть построен для любой доверительной вероятности по формуле:

 

РіРґРµ tq – коэффициент Стьюдента, зависящий РѕС‚ числа наблюдений n Рё выбранной доверительной вероятности Р. РћРЅ определяется СЃ помощью таблицы q-процентных точек распределения Стьюдента, которая имеет РґРІР° параметра: k = n – 1 Рё q = 1 – P; – оценка среднего квадратического отклонения среднего арифметического.

Доверительный интервал для погрешности DС…(Р) позволяет построить доверительный интервал для истинного (действи-тельного) значения измеряемой величины , оценкой которой является среднее арифметическое . Истинное значение измеряе-РјРѕР№ величины находится СЃ доверительной вероятностью Рвнутри интервала: . Доверительный интервал позволяет выяснить, насколько может измениться полученная РІ результате данной серии измерений оценка измеряемой величины РїСЂРё проведении повторной серии измерений РІ тех же условиях. Необходимо отметить, что доверительные интервалы строят для неслучайных величин, значения которых неизвестны. Такими являются истинное значение измеряемой величины Рё средние квадратические отклонения. Р’ то же время оценки этих величин, получаемые РІ результате обработки данных наблюдений, являются случайными величинами.

Недостатком доверительных интервалов при оценке случай-ных погрешностей является то, что при произвольно выбираемых доверительных вероятностях нельзя суммировать несколько погреш-ностей, т.к. доверительный интервал суммы не равен сумме довери-тельных интервалов. Суммируются дисперсии независимых случай-ных величин: Då = åDi. То есть, для возможности суммирования составляющие случайной погрешности должны быть представлены своими СКО, а не предельными или доверительными погрешностя-ми.