Основні властивості нескінченно малих послідовностей

 

 

Теорема. Сума (різниця) двох нескінченно малих послідовностей є нескінченно малою послідовністю.

Доведення. Нехай і - нескінченно малі послідовності. Задамо довільне . Тоді існує такий номер , що при , й існує такий номер , що при . Виберемо . Тоді при виконуватимуться нерівності і . Отже, при

.

 

Звідси випливає, що послідовності і нескінченно малі.

Наслідок. Алгебраїчна сума будь-якого скінченного числа нескінченно малих послідовностей є нескінченно малою послідовністю.

Теорема. Добуток обмеженої послідовності на нескінченно малу є нескінченно малою послідовністю.

Доведення. Нехай - обмежена послідовність, а - нескінченно мала. Оскільки обмежена, то існує таке число , що для всіх виконується нерівність . Задамо довільне . Оскільки послідовність нескінченно мала, то існує такий номер , що при виконується нерівність . Отже, при

.

 

Звідси випливає, що послідовність нескінченно мала.

Наслідок 1. Добуток нескінченно малої послідовності на число є нескінченно малою послідовністю.

Наслідок 2. Добуток двох нескінченно малих послідовностей є нескінченно малою послідовністю.

Дійсно, якщо послідовність нескінченно мала, то вона обмежена. Отже, добуток двох нескінченно малих послідовностей можна розглядати як добуток нескінченно малої послідовності на обмежену.

Із наслідку 2 випливає, що добуток скінченного числа нескінченно малих послідовностей є нескінченно малою послідовністю.

Зауваження. Стосовно частки двох нескінченно малих послідовностей у загальному випадку нічого сказати не можна, оскільки вона може бути нескінченно малою, постійною, нескінченно великою послідовністю або взагалі не визначеною.

 

ЛЕКЦІЯ 6

 

6. Збіжні послідовності.

7. Властивості збіжних послідовностей.

8. Невизначені вирази.

 

 

Збіжні послідовності

 

 

Границя числової послідовності. Число називається границею послідовності , якщо для будь-якого числа існує такий номер , що для всіх членів послідовності із номером виконується нерівність

 

. (2)

 

Якщо число є границею послідовності , то пишуть

 

,

 

а саму послідовність називають збіжною.

Послідовність, яка не є збіжною, називається розбіжною.

Приклад.Довести, що .

Доведення. Задамо довільне число і покажемо, що існує таке натуральне число , що для всіх членів послідовності із номером виконується нерівність .

Оскільки , то

 

.

 

Розв'язавши відносно нерівність , маємо .

Якщо в значенні узяти цілу частину числа , тобто покласти , то нерівність виконується для всіх . Отже, .

 

Якщо послідовність збіжна і , то будь-який її елемент можна подати у вигляді , де - елемент нескінченно малої послідовності .

Дійсно, якщо , то послідовність є нескінченно малою, оскільки для будь-якого існує такий номер , що для виконується нерівність , тобто .

Має місце й обернене твердження. Якщо можна подати у вигляді , де - нескінченно мала послідовність, то .

Нерівність (2) рівносильна нерівності або ,

із якої випливає, що знаходиться в околі точки . Отже, означення границі числової послідовності можна дати наступним чином.

Число називається границею послідовності , якщо для будь-якого числа існує такий номер , що всі члени послідовності із номером знаходяться в околі точки .

Очевидно, що нескінченно велика послідовність не має границі. Іноді говорять, що вона має нескінченну границю і пишуть

 

.

 

Якщо при цьому, починаючи з деякого номера, всі члени послідовності додатні ( від'ємні ), то пишуть .

Усяка нескінченно мала послідовність збіжна, причому .

Це безпосередньо випливає з означення границі числової послідовності й означення нескінченно малої числової послідовності.