Уравнения Максвелла для электромагнитного поля в вакууме
Будем использовать гауссову систему.
и являются источниками поля. Уравнения Максвелла позволяют по заданным источникам рассчитать электромагнитное поле. Уравнениям Максвелла в дифференциальной форме ставятся в соответствие уравнения в интегральной форме.
Закон сохранения заряда в форме уравнения непрерывности.
Запишем уравнение Максвелла: . Подействуем на него оператором скалярно. Получаем:
Но дивергенция всякого ротора равна нулю, поэтому в результате получаем:
- уравнение непрерывности
Проинтегрируем обе части этого уравнения по некоторому объёму:
, где -единичный вектор нормали
определяет количество заряда выносимого через поверхность объёма. Если - острый, то заряд выносится из объёма и -положителен. Если тупой, то заряд приходит в объём и - имеет знак минус.