Приклади. 1.На прямій лінії заданої рівнянням , знайти точку M(x,y), що знаходяться від точки цієї прямої на відстані 10 одиниць

 

1.На прямій лінії заданої рівнянням , знайти точку M(x,y), що знаходяться від точки цієї прямої на відстані 10 одиниць.

Розв’язання. Нехай шуканаточка прямої, тоді для відстані запишемо . За умовою . Оскільки точка належить прямій , що має нормальний вектор , то рівняння прямої можна записати

Тоді відстань . За умовою , або . З параметричного рівняння

Відповідь:

 

2.Точка рухається рівномірно з швидкістю в напрямку вектора від початкової точки . Знайти координати точки через с від початку руху.

Розв’язання. Спочатку знайти одиничний вектор . Його координати це напрямні косинуси

.

 

Тоді вектор швидкості

 

Канонічне рівняння прямої тепер запишется

параметричне рівняння.

Після чого скористатись параметричним рівнянням прямої при . Відповідь: .