Условия на границе раздела двух сред

 

Рассмотрим поведение электромагнитного поля при переходе через границу раздела двух сред с различными материальными характеристиками. Используем теорему Остроградского-Гаусса и теорему Стокса:

Теорема Остроградского-Гаусса:

т.е. совершается следующий переход:

Теорема Стокса:

Запишем первое и четвёртое уравнения Максвелла в среде:

Имеется граница раздела – поверхность, отделяющая одну среду от другой.

- нормаль к поверхности.

 

 

- скачок функции на границе раздела двух сред.

Рассмотрим цилиндр, образующие которого перпендикулярны поверхности . По объёму проинтегрируем первое и уравнение Максвелла:

Воспользуемся теоремой Остроградского-Гаусса:

В последнем равенстве мы воспользовались теоремой о среднем.

Аналогично:

Тогда:

В пределе, при ,

- заряд на поверхности раздела двух сред

Пусть в пределе , при этом

В результате получаем:

 

Если на поверхности нет свободных зарядов, то и , т.е. - непрерывна.

Аналогично рассмотрев второе уравнение Максвелла

Получим

Т.е. - всегда непрерывна, её скачок всегда равен нулю.

Теперь рассмотрим четвёртое уравнение Максвелла

Рассмотрим правую часть этого равенства:

Второе слагаемое, при даёт 0.

- ток, протекающий через поверхность , причём ток положителен в направлении нормали

При

Воспользуемся теоремой о среднем:

Рассмотрим предельный переход при , тогда

- поверхностный ток, текущий через перпендикулярно чертежу.

При - ток, текущий по поверхности, в расчёте на длину.

В результате получаем:

Если , то - непрерывна.

Аналогично для третьего уравнения Максвелла:

Имеем:

Т.е. тангенциальная составляющая электрического поля непрерывна.

Определим

тогда

Ввиду произвольности , это выражение эквивалентно выражению:

 

Уравнения Максвелла для стационарного электромагнитного поля в среде.

Поле стационарно, если оно не зависит явно от времени, т.е.

Уравнения Максвелла в этом случаем принимают вид:

+ связи:

В электростатике используются первое и третье уравнения, а в магнитостатике второе и четвертое.

Связь полей с потенциалами:

Задачи

1.Определить напряженность электрического поля внутри и снаружи равномерно заряженного шара . Объемная плотность заряда равна , радиус шара R.

 

Решение. Из принципа суперпозиции полей следует, что искомая напряженность поля равна разности напряженности электрического поля, создаваемого шаром без полости, и напряженности поля зарядов, заполняющих при этом полость.

Поле внутри полости

поле внутри шара (но вне полости)

поле снаружи шара

где - радиус-вектор, проведенный из центра шара к центру полости.

 

2. Определить коэффициенты разложения потенциала точечного заряда в интеграл Фурье.

Решение. Потенциал точечного заряда является решением уравнения

(1)

Представим и в виде разложений в интеграл Фурье:

(2)

Подставляя соотношения (2) в уравнение (1) и приравнивая в подынтегральных выражениях коэффициенты при , получим

.

3. Найти потенциал, создаваемый зарядом, распределенным в бесконечной среде по закону:

Решение. .

4. Определить потенциал точечного заряда е, находящегося в однородной анизотропной среде с заданным тензором диэлектрической проницаемости.

 

Решение. Предположив, что заряд расположен в начале координат, решим уравнения

Направим оси декартовой системы координат по главным осям тензора диэлектрической проницаемости. Тогда

Подставим соотношения (2) в уравнение (1):

Заменой уравнение приводится к виду

Здесь использовано свойство δ-функции:

Решение уравнения (4) имеет вид

где