Условия на границе раздела двух сред
Рассмотрим поведение электромагнитного поля при переходе через границу раздела двух сред с различными материальными характеристиками. Используем теорему Остроградского-Гаусса и теорему Стокса:
Теорема Остроградского-Гаусса:
т.е. совершается следующий переход:
Теорема Стокса:
Запишем первое и четвёртое уравнения Максвелла в среде:
Имеется граница раздела – поверхность, отделяющая одну среду от другой.
- нормаль к поверхности.
- скачок функции на границе раздела двух сред.
Рассмотрим цилиндр, образующие которого перпендикулярны поверхности . По объёму проинтегрируем первое и уравнение Максвелла:
Воспользуемся теоремой Остроградского-Гаусса:
В последнем равенстве мы воспользовались теоремой о среднем.
Аналогично:
Тогда:
В пределе, при ,
- заряд на поверхности раздела двух сред
Пусть в пределе , при этом
В результате получаем:
Если на поверхности нет свободных зарядов, то и , т.е. - непрерывна.
Аналогично рассмотрев второе уравнение Максвелла
Получим
Т.е. - всегда непрерывна, её скачок всегда равен нулю.
Теперь рассмотрим четвёртое уравнение Максвелла
Рассмотрим правую часть этого равенства:
Второе слагаемое, при даёт 0.
- ток, протекающий через поверхность , причём ток положителен в направлении нормали
При
Воспользуемся теоремой о среднем:
Рассмотрим предельный переход при , тогда
- поверхностный ток, текущий через перпендикулярно чертежу.
При - ток, текущий по поверхности, в расчёте на длину.
В результате получаем:
Если , то - непрерывна.
Аналогично для третьего уравнения Максвелла:
Имеем:
Т.е. тангенциальная составляющая электрического поля непрерывна.
Определим
тогда
Ввиду произвольности , это выражение эквивалентно выражению:
Уравнения Максвелла для стационарного электромагнитного поля в среде.
Поле стационарно, если оно не зависит явно от времени, т.е.
Уравнения Максвелла в этом случаем принимают вид:
+ связи:
В электростатике используются первое и третье уравнения, а в магнитостатике второе и четвертое.
Связь полей с потенциалами:
Задачи
1.Определить напряженность электрического поля внутри и снаружи равномерно заряженного шара . Объемная плотность заряда равна , радиус шара R.
Решение. Из принципа суперпозиции полей следует, что искомая напряженность поля равна разности напряженности электрического поля, создаваемого шаром без полости, и напряженности поля зарядов, заполняющих при этом полость.
Поле внутри полости
поле внутри шара (но вне полости)
поле снаружи шара
где - радиус-вектор, проведенный из центра шара к центру полости.
2. Определить коэффициенты разложения потенциала точечного заряда в интеграл Фурье.
Решение. Потенциал точечного заряда является решением уравнения
(1)
Представим и в виде разложений в интеграл Фурье:
(2)
Подставляя соотношения (2) в уравнение (1) и приравнивая в подынтегральных выражениях коэффициенты при , получим
.
3. Найти потенциал, создаваемый зарядом, распределенным в бесконечной среде по закону:
Решение. .
4. Определить потенциал точечного заряда е, находящегося в однородной анизотропной среде с заданным тензором диэлектрической проницаемости.
Решение. Предположив, что заряд расположен в начале координат, решим уравнения
Направим оси декартовой системы координат по главным осям тензора диэлектрической проницаемости. Тогда
Подставим соотношения (2) в уравнение (1):
Заменой уравнение приводится к виду
Здесь использовано свойство δ-функции:
Решение уравнения (4) имеет вид
где