Уравнения Максвелла для квазистационарного электромагнитного поля

 

 

Уравнения Максвелла в среде:

Уравнения связи для однородной изотропной среды:

Будем рассматривать не магнитные материалы, т.е. .

Случай квазистационарных полей означает, что поля считаем в одних случаях стационарными, а в других случаях – не стационарными. Для квазистационарных полей:

1) , а отбрасываем, т.к.

2) - оставляем как есть.

Критерий применимости:

 

Если , то . Слагаемое . В гауссовой системе единиц имеет размерность как .

Составим отношение для сравниваемых слагаемых:

Это есть критерий или условие квазистационарности. И тогда:

Рассмотрим, как упрощается :

Запишем закон сохранения заряда в форме уравнения непрерывности:

,

Используем (*), тогда:

, где

Общее решение этого уравнения:

Для сред с высокой проводимостью мала, , где - период, тогда:

Но поле может и не меняться по гармоническому закону, а может меняться как угодно, тогда - время, за которое поле меняется существенно.

Тогда

, и

Т.е. заряды быстро рассасываются. Значит для квазистационарного случая

В итоге получаем для квазистационарного случая систему уравнений Максвелла:

В квазистационарных полях есть эффекты:

1)Скин-эффект – быстропеременное поле вытесняется на поверхность проводника.

2)Токи Фуко – переменное магнитное поле создаёт электрические токи внутри проводника.